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ABSTRACT. Let S be a smooth projective surface, and D Ă S a smooth divisor.
In this paper we prove that the moduli space of stable Higgs sheaves on a d-th
root stack S associated with a pair (S, D) is isomorphic to the moduli space of
parabolic Higgs sheaves on (S, D). We also construct and generalize the moduli
space of relative stable sheaves on (S, D) of Kapranov, the moduli space of relative
with the stacky divisor of stable Higgs sheaves on S , and prove that it is related to
the geometric Eisenstein series associated with the curve D. We relate the Tanaka-
Thomas’s Vafa-Witten invariants for the root stack S to the parabolic situation
considered by Kapranov inspired by the S-duality conjecture.
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1. INTRODUCTION

In this paper we continue to study the Tanaka-Thomas’s Vafa-Witten invariants
for projective surface Deligne-Mumford stacks [48], [49], [25] in the case of root
stacks over a smooth projective surface. The definition of the twisted Vafa-Witten
invariants for cyclic gerbes S Ñ S in [27] were used to define the Langlands dual
gauge group SU(r)/Zr-Vafa-Witten invariants and prove the S-duality conjecture
of Vafa-Witten [54] for P2 and K3 surfaces. For the root stack P(1, 2, 2), in [26], the
Vafa-Witten invariants were calculated using the result in [13], and it also can give
the formula inspired by the S-duality conjecture. So it is generally interesting to
see how the root stack is related to the S-duality conjecture.

1.1. Background. The S-duality conjecture of Vafa-Witten [54] predicted that the
generating function of the Euler characteristic of the moduli space of stable
coherent sheaves on projective surfaces should be modular forms. They also
conjecture a S-transformation formula for the invariants of counting instantons
for the gauge group SU(r) and its Langlands dual SU(r)/Zr. In physics the S-
duality is a very rich conjecture, for instance in [36] Kapustin-Witten related the
S-duality to Langland duality in number theory. In the mathematics side, the
moduli space of solutions of the Vafa-Witten equation on a projective surface S has
a partial compactification by Gieseker semistable Higgs pairs (E, φ) on S, where E
is a coherent sheaf with rank ą 0, and φ P HomS(E, Eb KS) is a section called a
Higgs field.

The formulas in [54] (for instance Formula (5.38) of [54]) and some
mathematical calculations as in [14], implies that the invariants in [54] may have
other contributions except purely from the surfaces. In [48], [49] Tanaka and
Thomas define the Vafa-Witten invariants using the moduli space N of Gieseker
semi-stable Higgs pairs (E, φ) on S with topological data (r, c1, c2), where r = rank
of the torsion free sheaf E, and c1, c2 are the first and second Chern classes of E.
In [25], Kundu and the first author generalized the definition and construction of
Tanaka-Thomas to smooth projective two dimensional Deligne-Mumford stacks,
which we call surface DM stacks.

Let S be a surface DM stack and X := Tot(KS ) the total space of the canonical
line bundle of S . Again by spectral theory, the abelian category of Higgs pairs
on S is equivalent to the abelian category of two dimensional torsion sheaves
on X supported on S . By choosing suitable generating sheaf Ξ for S and a
modified Hilbert polynomial H as in [46], the moduli space N H(S) of Gieseker
semi-stable Higgs pairs (E, φ) on S with fixed modified Hilbert polynomial H is
isomorphic to the moduli space of Gieseker semi-stable torsion sheaves Eφ on the
total space X with the fixed corresponding modified Hilbert polynomial. The
modified Hilbert polynomial is determined by a K-group class c P K0(S). We
denote by N := N c(S). Since X is a smooth Calabi-Yau threefold DM stack, the
moduli space N admits a symmetric obstruction theory in [2]. Therefore there
exists a dimension zero virtual fundamental cycle [N ]vir P H0(N ). The moduli
space N is not compact, but it admits a C˚-action induced by the C˚-action on X
by scaling the fibres of X Ñ S . The C˚-fixed locus NC˚ is compact, then from
[12], NC˚ inherits a perfect obstruction theory from N and the virtual localized
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invariant

(1.1.1) ĄVWc(S) =
ż

[NC˚ ]vir

1
e(Nvir)

is defined as the U(r) Vafa-Witten invariants, where Nvir is the virtual normal
bundle.

But in this case the obstruction sheaf has a trivial summand making the
invariants vanishes for most of the surfaces. Then in [48] and the stacky version
[25], one considers the moduli space NK

L of stable Higgs sheaves (E, φ) with fixed
determinant L and trace free φ. Then the space NK

L also admits a symmetric
obstruction theory and there exists a C˚-action induced by the C˚-action on X
by scaling the fibres. The C˚-fixed locus (NK

L )C˚ is compact, then the virtual
localized invariant

(1.1.2) VWc(S) =
ż

[(NKL )C˚ ]vir

1
e(Nvir)

is defined as the SU(r) Vafa-Witten invariants since the gauge group of the
associated sheaves is SU(r), where Nvir is also the virtual normal bundle.

There is another invariants defined by the weighted Euler characteristic

(1.1.3) vw(S) = χ(NK
L , νN)

where νN : NK
L Ñ Z is the Behrend function, see [2]. We call it the small Vafa-

Witten invariant. If NK
L is compact and admits a symmetric obstruction theory,

then
ż

[NKL ]vir
1 = χ(NK

L , νN)

and this is Behrend’s theorem in [2, Theorem 4.18]. On the other hand the C˚

action on NK
L induces a cosection ONKL

Ñ ONKL
by differentiating the C˚-action.

Then there is a Kiem-Li localized cycle

[NK
L ]vir

loc P A0(NK
L )

and the Kiem-Li localized invariant
ş

[NKL ]vir
loc

1 is proved to be the same as Behrend’s

weighted Euler characteristic vw(S) = χ(NK
L , νN), see [22], [24].

The moduli space NK
L here is not compact, but admits a C˚-action whose fixed

loci are compact. There are two main components of the C˚-fixed locus (NK
L )C˚ .

The first one M (1) = ML corresponds to the C˚-fixed Higgs pairs (E, φ) such that
the Higgs fields φ are zero. This corresponds to the moduli space of Gieseker stable
sheaves on S. This component is called the Instanton Branch according to [14]. In
this case we have

VW(S) =
ż

[(ML)vir]
cvd(E‚M )

where E‚M is the perfect obstruction theory on ML, and vd is the virtual
dimension. This is Ciocan-Fontanine-Kapranov/Fantechi-Göttsche virtual signed
Euler number, see [25, §3].

If the surface DM stack S satisfies KS ď 0, then [48] [49] prove that the only
C˚-fixed Higgs pairs must have φ = 0, and

VW(S) = (´1)vdχ(ML)
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and this signed Euler number of ML is the same as vw(S) = χ(NK
L , νN) =

χ(ML, νN|ML), see [22, §5].
The second component M (2) corresponds to the C˚-fixed Higgs pairs (E, φ)

such that the Higgs fields φ are nonzero. This component is called the Monopole
Branch. The case usually happens for general type surfaces or DM stacks. In [48,
§8], [25, §4] this component is proved to be the union of nested Hilbert schemes on
S. Gholampour and Thomas [11] has found a new way to calculate the invariants
by reducing the integration on nested Hilbert schemes to Hilbert schemes, and it
is very interesting to see what happens for surface DM stacks.

In this paper we are more interested in the invariants vw, although they are
not deformation invariant. Since the invariants vw is defined by weighted Euler
characteristics, it can be applied to study the geometric Eisenstein series associated
with a smooth divisor in the surface S following Kapranov [34]. At least for the
surface DM stacks S satisfying KS ă 0, vw gives the same Vafa-Witten invariants
VW which are deformation invariant. For K3 surfaces, VW(S) = vw(S), and [?]
prove this result for twisted Vafa-Witten invariants VWtw(S) = vwtw(S) for K3
gerbes S . In literature this invariant vw is closely related to the local Donaldson-
Thomas invariants and is also predicted to be modular forms, see [53].

1.2. The moduli space of Higgs pairs on root stacks. Root stacks provide
interesting two dimensional Deligne-Mumford stacks. We provide a brief
explanation here for the special case and leave the detailed definition to §2.
In general it is convenient to use log schemes to define root stacks. It is
very interesting to see how the Vafa-Witten invariants inspired by the S-duality
conjecture can be put into the definition of general root stacks. In this paper we
first deal with the case of the Vafa-Witten invariants of root stacks S given by a
pair (S, D), where S is a smooth projective surface and D Ă S a smooth divisor
curve.

Let us consider the quotient stack [A1/Gm], where Gm acts on A1 naturally.
The category (L, s) of line bundles with global section on S is equivalent to the
category of morphisms

S Ñ [A1/Gm].
Let d P N be a positive integer. Let Θd : [A1/Gm] Ñ [A1/Gm] be the morphism
of stacks given by x ÞÑ xd and t ÞÑ td where x P A1 and t P Gm. The line bundle
OS(D) and the section sD gives a morphism

(OS(D), sD) : S Ñ [A1/Gm].

Then
S := d

b

(S, D) = Sˆ[A1/Gm] [A
1/Gm]

is the fibred product of stacks. Let π : S Ñ S be the projection and S is the coarse
moduli space of S . The stacky locus of S is exactly D := π´1(D), which is a
µd-gerbe over D.

The moduli space of stable coherent sheaves on any projective DM stack has
been studied by F. Nironi in [46]. A review is given in [25, §2]. Let us look at the
d-th root stack S = d

a

(S, D). Let Dred be the reduced divisor on S and let

Ξ :=
d´1
à

l=0
OS (l ¨Dred).
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Then Ξ is a generating sheaf for S which means that Ξ is very ample under
the morphism π : S Ñ S. Using this generating sheaf the modified Hilbert
polynomial is defined by:

PΞ(E, m) = χ(S , Eb Ξ_ b p˚OS(m)).

Then we can write down

PΞ(E, m) =
dim
ÿ

i=0

αΞ,i
mi

i!
,

where dim = dim(E) is the dimension of the sheaf E. The reduced Hilbert
polynomial for pure sheaves, and we will denote it with pΞ(E); is the monic
polynomial with rational coefficients PΞ(E)

αΞ,d
Then let E be a pure coherent sheaf, it

is semistable if for every proper subsheaf F Ă E we have pΞ(F) ď pΞ(E) and it is
stable if the same is true with a strict inequality. Then fixing a Hilbert polynomial
H, the moduli stack of semistable coherent sheaves M := MH on S is constructed
in [46]. If the stability and semistability coincide, the coarse moduli space M is a
projective scheme.

For the pair (S, D), Maruyama and K. Yokogawa [41] defined the notion of
parabolic sheaves. A parabolic sheaf E is given by a parabolic structure on E which
is given by a length d-filtration

E = F0(E) Ą F1(E) Ą ¨ ¨ ¨ Ą Fd(E) = E(´D),

together with a system of weights

0 ď α0, α1, ¨ ¨ ¨ , αd´1 ă 1.

We call E‚ = (E, Fi(E)) a parabolic sheaf associated with the divisor D. Then
Maruyama and Yokogawa defined the parabolic stability condition in Definition
3.3 on the parabolic sheaves and construct the moduli space of parabolic stable
sheaves, see §3.1. It turns out that the stability using the generating sheaf Ξ on
S is the same as the parabolic stability of Maruyama and Yokogawa, see (3.1.2).
Then from [46], or more generally [51], the moduli space of stable sheaves on a
root stack is isomorphic to the moduli space of parabolic stable sheaves on a pair
(S, D), where D is a smooth divisor curve by fixing a suitable Hilbert polynomial,
see Theorem 3.6.

The definition of Maruyama and Yokogawa on parabolic sheaves was
generalized by Yokogawa [55] to define parabolic Higgs pairs, and Gieseker
semistability on them. The definition is almost the same as the case of parabolic
sheaves except that we take the Higgs field φ-invariant subsheaves of the Higgs
pair (E, φ). The moduli space Npa of semistable parabolic Higgs pairs with a fixed
Hilbert polynomial H was also constructed. Our first main result is:

Theorem 1.1. (Theorem 3.13) Let S = d
a

(S, D) be the root stack of S with respect to
the smooth divisor D. Choosing the generating sheaf Ξ = ‘

d´1
l=0 OS (lDred), and fixing

some modified Hilbert polynomial H P Q[m]. Then the moduli space NH := NH(S)
of semistable Higgs pairs on the root stack S is isomorphic to the moduli space Npa :=
N H,α

pa,(S,D)
of semistable parabolic Higgs pairs on (S, D). Their corresponding stable open

subspaces N s
H and N s

pa are also isomorphic.



6 YUNFENG JIANG

Thus one can use the moduli space of Higgs pairs on the root stack S to study
the moduli of parabolic Higgs pairs, and more interestingly study the Vafa-Witten
invariants on them.

1.3. The relative moduli spaces. In the work [34], Kapranov studied the relation
between the generating functions of the moduli space of stable sheaves on the
surface S and the geometric Eisenstein series for any Kac-Moody group. For the
pair (S, D), where S is a smooth projective surface and D Ă S a smooth curve.
Let S0 := SzD. By fixing a coherent sheaf E0 on S0 and a Hilbert polynomial H,
Kapranov constructed the moduli space M H(S; D) of sheaves E on S such that
E|S0 – E0. This moduli space is an ind-scheme, and if the self-intersection number
D2

S is negative, then M H(S; D) is a fine moduli space, see [34, Theorem 2.2.1].
This relative situation studied in this paper is related to the restriction of coherent
sheaves on the curve D Ă S. A slope stable torsion free coherent sheaf E on S is still
stable when restricted in sufficiently large degree smooth curves D Ă S, see [43],
[10], [5]. In an interesting case of blow-up so that the smooth divisor is D = Pr, a
slope semistable sheaf on S, when restricted to D can be made to be optimal (close
to semistable) in the paper [8]. It is interesting to study the restriction theorem for
Gieseker stability and for stable Higgs sheaves, and relate the S-duality on surfaces
to Langlands duality on curves.

We study the Kapranov relative moduli space using formal moduli theory as in
[28]. We do this on the root stack S with D Ă S an orbifold divisor. Let R := κ[[t]]
the the discrete valuation ring and K = κ((t)) the field of Laurent series, which is a
non-archimedean field with valuation val. For the stack S , let pS Ñ Spf(R) be the
trivial t-adic completion of S so that pS is a stft formal R-scheme. We consider the
moduli space M H(S ;D) of sheaves E on S such that E|S0 – E0 for a fixed E0 on
S0 := SzD. Then we have

Theorem 1.2. The moduli space M H(S ;D) can be made to a formal subscheme of
M H

R ( pS), where M H
R ( pS) is the formal moduli scheme of stable sheaves E on pS with Hilbert

polynomial H.

Let pSD be the formal completion of S along the closed substack D. Then the
similar moduli spaces and relative moduli spaces can be considered. We have:

Theorem 1.3. (Theorem 4.1) The moduli stack xM H
R ( pSD ;D) of stable relative sheaves

E on pSD with Hilbert polynomial H and E|S0
D
– E0 is a subformal moduli stack of

xMR( pSD , H).

The formal moduli scheme and formal relative parabolic scheme of stable
sheaves on pS can be similarly defined. We also define and construct the formal
moduli space of stable parabolic or stable Higgs pairs (E, φ) on the formal scheme
pS or pS . The result is:

Let Tm := Spec(R/(tm+1)), where t is the uniformizer of the discrete valuation
ring R. Then we have:

Theorem 1.4. (Theorem 4.6) Let pS be a stft formal scheme over R, and let

pSm := pSˆR Tm.
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Then
lim
ÝÑ

m
N H

Tm ,pa(
pSm) – N H

R,pa(
pS),

where N H
R,pa(

pS) is the formal moduli stack of stable parabolic formal sheaves over pS with
Hilbert polynomial H.

It is interesting to point out that in general the relative moduli space M H(S, D)
is not the same the moduli space of stable coherent sheaves M H(D) on the smooth
curve D. It is of course interesting to study the relation between these two moduli
spaces, and one hopes that the S-duality on the surface S can be reduced to the
Langlands duality on the curve D, see [31] for a progress in this direction.

1.4. Vafa-Witten invariants and the Blow-up formula. For the root stack S =
d
a

(S, D), we use a K-group class c P K0(S) to fix a Hilbert polynomial H. Let
N c(S) := NK

L,c(S) be the moduli space of Higgs pairs (E, φ) on S with K-group
class c and determinant L P Pic(S). Then the invariant

vwc(S) = χ(N c(S), νN )

is the weighted Euler characteristic weighted by the Behrend function νN :
N c(S) Ñ Z. The formal relative moduli space xN c(S ;D) of stable Higgs pairs
such that E|S0 – E0 is a subformal moduli space of the the formal completion of
{N c(S) of N c(S). The Behrend function

ν
pN : {N c(S)Ñ Z

on the formal moduli space {N c(S) is defined as follows. The moduli space N c(S)
is isomorphic to the moduli space N tor of stable torsion sheaves Eφ (associated
with a Higgs pair (E, φ)) on the Calabi-Yau DM stack X = Tot(KS ). The moduli
space N tor is a d-critical scheme in the sense of Joyce [33], i.e., locally the critical
locus of a regular function on a higher dimension smooth scheme. Then the
Behrend function νN is the Euler characteristic of the Milnor number, see [2, §2].
After taking the completion, the Behrend function ν

pN on the formal space {N c(S)
is the same as the Behrend function on the formal space zN tor since both of them
have the same Milnor number, see [23].

Then we define the relative invariant by:

(1.4.1) vwc(S ;D) = χ(xN c(S ;D), ν
pN | pN c(S ;D)

).

All of above definitions and constructions work for the pair (S, D), and we have
the relative invariant

(1.4.2) vwc(S; D) = χ(xN c(S; D), ν
pN | pN c(S;D)

).

Let us fix to the case (S, D) such that D = P1 and D2
S = ´deg is negative. The

relative moduli space in this case M (S; D) of stabel relative coheretn sheaves with
K-class c is a fine moduli space according to Kapranov [34, Theorem 2.2.1]. Then
the relative moduli space of Higgs pairs N c(S; D) is also a fine moduli space and
we can take xN c(S; D) as the trivial formal completion over Spf(R). The K-class
in this case can be chosen as c = (rk, c1, c2) P H˚(S), where rk is the rank of the
stable sheaves E on S, c1, c2 are the first and second Chern class of E.
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On the other hand, let pSD be the formal completion of S along D, then it is
a stft formal scheme over Spf(R) with the underlying support scheme D. The
formal scheme pSD can be understood as the formal thickening of D inside S or the
formal neighborhood of D inside the normal bundle ND/S. By relative GAGA in
[16, Theorem 9.2.1], if j : pSD Ñ S is the canonical morphism as formal schemes,
then the formal completion of the étale cohomology of coherent sheaf E on S is
isomorphic to the the étale cohomology of the formal completion pE on pSD. We can
define the Hilbert polynomials of pSD, hence the Gieseker stability. Let M c

R(
pSD; D)

be the formal moduli scheme of relative stable coherent sheaves E on pSD such that
E|

pS0
D
– E0; and N c

R(
pSD; D) be the formal moduli scheme of relative Higgs pairs

(E, φ) on pSD such that E|
pS0

D
– E0. We define the formal geometric Eisenstein series

as:

Definition 1.5. We define:

Efor(q) = E
pSD ,pE0(q) =

ÿ

cPK0(pSD)

χ( xM c
R(

pSD; D))qc

and
Ffor(q) = F

pSD ,pE0(q) =
ÿ

cPK0(pSD)

χ(xN c
R(

pSD; D))qc

where for the formal schemes, the Euler characteristic χ( xM c
R(

pSD; D)) and χ(xN c
R(

pSD; D))
are defined using étale cohomology.

If the Vafa-Witten invariants VW = vw which is the case when KS ă 0, we have
a blow-up formula on [40].

Theorem 1.6. (Theorem 5.13) Let σ : rS Ñ S be the blow-up of the surface S along a point
P P S. Let

vwrS
rc1,rc2

= χ(NK
L (rS), νNKL

), vwS
c1,c2

= χ(NK
L (S), νNKL

)

be the small Vafa-Witten invariants of rS, S respectively with topological data rc1, c1, rc2 =

c2. Let ML(rS) and ML(S) be the moduli spaces of stable torsion free sheaves on rS, S
respectively with topological data rc1, c1, rc2 = c2. Assume that

vwrS
rc1,rc2

= (´1)vdχ(ML(rS)), vwS
c1,c2

= (´1)vdχ(ML(S)).

Then we have:
ÿ

n
vwrS

rc1,n qn =
Efor
pSD ,pE0(q)(

ś

n‰0(1´ qn)
)2 ¨

ÿ

n
vwS

c1,n qn.

The series E
pSD ,pE0(q) can be calculated very explicitly, see Proposition 5.11.

Remark 1.7. Theorem 1.6 makes sense for projective surfaces S with KS ă 0 or K3
surfaces, since the C˚ fixed loci on NK

L (rS) and NK
L (S) are ML(rS) and ML(S), which are

smooth. These are the Instanton branches of the fixed loci. For smooth projective surfaces
S with KS ą 0, for instance smooth general type surfaces, it is interesting to study the
blow-up formula for such type of surfaces. The C˚ fixed part for NK

L (S) contains the
second component M (2) such that for (E, φ) P M (2), φ ‰ 0. The component M (2) is
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called the Monopole branch for the fixed loci, which is given by nested Hilbert schemes, see
[48]. One hopes that for the fixed curve D Ă S, the Hitchin fibration map for D can help
for the blow-up formula.

1.5. Discussion of the stacky blow-up. We also give a explanation of the blow-
up on in the stacky case. Let S be a projective surface with one isolated quotient
sigularity, for instance the quintic surface with only one point P which is the type
of A2 singularity, and let π : S Ñ S be the morphism to its coarse moduli space.
Let σ : rS Ñ S be blow-up along the singular point P P S. We put this into a
diagram:

rS

σ
��

S

π
��

S

In general it is interesting to compare the Vafa-Witten invariants of rS and the Vafa-
Witten invariants of S . Note that K0(rS) – K0(S) have the same K-groups. Fixing
a K-group class c = (r, c1, c2) P H˚(rS). If the surface rS and S all satisfy K

rS ă

0, KS ă 0 or are K3 surfaces, then

VWc(rS) = vwc(rS) = (´1)vdχ(M c(rS))

where vd = 2rc2 ´ (r ´ 1)c2
1 ´ (r2 ´ 1)χ(O

rS). And for such a K-group class c P
K0(S), the invariant

VWc(S) = vwc(S) = (´1)vdχ(M c(S))

where vd is the virtual dimension of the moduli space M c(S). We hope that the
invariants vw of rS and S are related by wall crossings.

The series E
pSD ,pE0(q) can also be calculated very explicitly,

Proposition 1.8. ([34, Theorem 7.4.6]) In the case of stacky blow-up such that D = P1,
and D2

S = ´2, we have

E
pSD ,pE0(q) =

ÿ

aPZ

q´Ψ(a,a) =
ÿ

aPZ

q´a2
.

1.6. Outline. The paper is organized as follows. We review the construction of
root stacks in §2, where in §2.1 we collect some materials on log schemes; and in
§2.2 we define root stacks on log schemes. §3 studies the moduli space of stable
Higgs pairs on the rot stack S and parabolic stable Higgs pairs on the pair (S, D)
for D Ă S a smooth divisor. More precisely, in §3.1 we review the construction
of the moduli of parabolic stable sheaves on (S, D); and in §3.2 we prove that
the moduli space of parabolic Higgs pairs on (S, D) is naturally isomorphic to
the moduli space of stable Higgs pairs on the root stack S . The moduli space
of relative stable sheaves and Higgs pairs on the root stack (S ,D) and on the
projective surface (S, D) are constructed in §4, where in §4.1 the construction of
Kapranov [34] is reviewed; and in §4.2 we construct the formal relative space of
stable Higgs sheaves on (S ,D) and (S, D). Finally in §5 we put the Vafa-Witten
invariants into the picture of relative moduli of Higgs sheaves. In more detail in
§5.1 we review the geometric Eisenstein series; in §5.2 we talk about the moduli
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space of Higgs bundles on curves; and finally in §5.3 we study the case that D =
P1 and get the blow-up formula for the Vafa-Witten invariants in the special case.

1.7. Convention. We work over an algebraically closed field κ with characteristic
zero except in some sections we will make clear over characteristic p. We use C˚ to
represent the multiplicative group A1

κzt0u. All the moduli spaces of stable sheaves
and Higgs pairs are over κ.

In §4 we use formal moduli spaces over a discrete valuation ring as in [28].
Let us fix some notations. For the formal schemes, let R be a complete discrete
valuation ring R = κ[[t]], with quotient field K := κ((t)), and perfect residue
field κ. We fix a uniformizing element t in R, i.e., a generator of the maximal
ideal. The field K is a non-archimedean field with valuation v such that v(t) = 1.
The absolute value | ¨ | = e´v(¨). All formal schemes over R is stft (separate and
topologically of finite type) in sense of [45], and the non-archimedean analytic
spaces over K are quasi-compact Berkovich analytic spaces [4].

Acknowledgments. Y. J. would like to thank Huai-Liang Chang and Martijn
Kool for valuable discussions on the Vafa-Witten invariants, and Shizhang Li
for the discussion of the formal moduli space of coherent sheaves on the formal
completion of a surface along a smooth divisor. The author would like to thank
Hong Kong University of Science and Technology, Shanghai Tech University for
hospitality where part of the work is done. This work is partially supported by
NSF DMS-1600997.

2. ROOT STACKS

In this section we recall the knowledge of root stacks. Our main references are
[6], [51],[7]. Let d be a positive integer, the d-th root stack associated with a scheme
S and a Cartier divisor D was constructed in [7]. The notion is generalized to log
schemes by [50], [51].

2.1. Log schemes. Let S be a scheme and we denoted by DivS the fibred category
over the small étale site Sét consisting of pairs (L, s) where L is an invertible sheaf
and s is a global section.

Definition 2.1. A Deligne-Faltings (DF) structure on S is a symmetric monoidal
functor L : A Ñ DivS with trivial kernel, where A is a sheaf of monoids on the small
étale site Sét.

A logarithmic scheme is a scheme S equipped with a DF structure.

Remark 2.2. (1) That the trivial kernel for L : A Ñ DivS means that for any U Ñ S
étale, we get a morphism A(U) Ñ DivS(U), and the only section of A(U) that
goes to (OU , 1) is the zero section.

(2) We denote the log scheme by (S, A, L), or just S if we understand the data (A, L).
(3) Let us recall the standard definition of a log scheme, see [?]. A log scheme is a pair

(S, M) such that M is a sheaf of monoids on Sét, and there is a morphism

α : M Ñ OS

such that α|
α´1(OˆS ) : α´1(OˆS )

„
ÝÑ OˆS is an isomorphism. A log scheme is

quasi-integral if the natural resulting action of OˆS on M is free. Let us relate this
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to the Definition 2.1. Given a morphism of sheaves of monoids

α : M Ñ OS

one takes the stack quotient by OˆS and obtain a symmetric monoidal functor

L : M Ñ [OS/OˆS ] – DivS .

Let A = M. This means that a section of A is send by L to the dual La of the
invertible sheaf associated to the Gm-torsor given by the fiber Ma Ñ OS gives
the section of La. On the other hand, if L : A Ñ DivS is a DF-structure, we
take the fibred product AˆDivS OS Ñ OS, and verify that M = AˆDivS OS is
equivalent to a sheaf.

Definition 2.3. A morphism of log schemes (S, A, L) Ñ (T, B, N) is a pair ( f , f 5),
where f : S Ñ T is a morphism of schemes, and f 5 : f ˚(B, N)Ñ (A, L) is a morphism of
DF structures of S. Here f ˚(B, N) = ( f ˚B, f ˚N) is a pullback of DF structure, see [6],
and the morphism

f 5 : f ˚(B, N)Ñ (A, L)

of DF structures is given by a pair f 5 = ( f 5, α) such that

f 5 : f ˚B Ñ A

is a morphism as sheaves of monoids, and α : L ˝ f 5 – f ˚N is a natural isomorphism of
symmetric monoidal functors f ˚B Ñ DivS.

Definition 2.4. A morphism of log schemes

( f , f 5) : (S, A, L)Ñ (T, B, N)

is strict if f 5 is an isomorphism.

We introduce the charts for the log schemes.

Definition 2.5. A chart for a sheaf of monoids A on Sét is a homomorphism of monoids

φ : P Ñ A(S)

such that the induced map of sheaves φ : PS Ñ A is a cokernel, which means that
the induced homomorphism between the stalks are all cokernels (the induced morphism
P/φ´1(0)Ñ A is isomorphism at each stalk.)

A sheaf of monoids A on Sét is coherent if A has charts with finitely generated monoids
locally for the étale topology of S. A log scheme (S, A, L) is coherent if A is coherent.

Remark 2.6. A chart for a DF structure (A, L) on S can also be seen as a symmetric
monoidal functor P Ñ DivS for a monoid P, that indues the functor L : A Ñ DivS by
sheafifying and trivializing the kernel.

Let us recall the Kato chart for a log scheme, which is a morphism of monoids

P Ñ OS(S)

that induces the log structure α : M Ñ OS. Every Kato chart P Ñ OS(S) induces
a chart by composing with OS(S)Ñ Div(S).
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Definition 2.7. A Kato chart for a morphism of log schemes

( f , f 5) : (S, A, L)Ñ (T, B, N)

is a chart such that the functors

P Ñ Div(T), Q Ñ Div(S)

lift to P Ñ OT(T) and Q Ñ OS(S). Or equivalently a Kato chart can be seen as a
commutative diagram of log schemes:

(S, A, L) //

��

Spec(κ[Q])

��
(T, B, N) // Spec(κ[P])

and a chart can be seen as a similar commutative diagram with the quotient
stacks [Spec(κ[P])/pP] and [Spec(κ[Q])/ pQ] replacing Spec(κ[P]) and Spec(κ[Q])

respectively, where pP, pQ are the Cartier duals of Pgp, Qgp respectively.

Definition 2.8. A log scheme (S, A, L) is fine if it is coherent and the stalks of A are fine
monoids (integral and finitely generated). A log scheme (S, A, L) is fine and saturated
(fs) if it is fine and the stalks of A are fine and saturated monoids.

We are more interested in the following root stacks in this paper. Let S be a
scheme and D Ă S an effective Cartier divisor. The natural log structure associated
with D is given by

M =
!

f P OS| f |SzD P OˆSzD
)

as a sheaf of OS, and the inclusion

α : M Ñ OS.

This is called the divisorial log structure associated with D on S. If D is a simple
normal crossing divisor and has components D1, ¨ ¨ ¨ , Dn, then the corresponding
DF structure admits a global chart:

Nn Ñ Div(S)

sending
ei ÞÑ (OS(Di), si)

where si is the canonical section of OS(Di). If D is normal crossing but not simple
normal crossing, then the divisorial log structure is still fs, but does not admit a
global chart.

2.2. Root stacks. Root stacks are stacks that parametrize roots of the log structure
of a log scheme (S, A, L) with respect to a system of denominators A Ñ B.

Definition 2.9. A system of denominators on a fs log scheme (S, A, L) is a coherent sheaf
of monoids B on Sét with a Kummer morphism of sheaves of monoids j : A Ñ B (i.e., the
induced morphism between the stalks is Kummer at every point).

Remark 2.10. Let us recall that a homomorphism of monoids A Ñ B is Kummer if it is
injective, and for any q P B there exists a positive integer n such that nq is in the image.
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For instance the inclusion A Ñ 1
d A where 1

d A is the sheaf with sections a
d where a is a

section of A. If r|m, then we have 1
d A Ď 1

m A. The direct limit

lim
ÝÑ

r

1
d

A

will be denoted by AQ. A section of AQ is locally (globally if S is quasi-compact) of the
form a

d for some positive integer d P N. The inclusion A Ď AQ is the maximal Kummer
extension of A.

Definition 2.11. Let B be a system of denominators on a log scheme (S, A, L). The root
stack B

?
S is the fibred category over the category of schemes (SchS) which is defined as

follows:
B?S : (SchS)Ñ Groupoids

such that for any scheme t : T Ñ S, the category B
?

S(T) is the category of pairs (N, α)
where N is a DF structure N : t˚B Ñ DivT over T, and α is a natural isomorphism
between the pullback t˚L and the composition t˚A Ñ t˚B N

ÝÑ DivT , and the arrows are
morphisms of DF structures compatible with the natural isomorphisms.

Moreover, if we take B = 1
d A, we obtain the d-th root stack of S associated with the log

structure (A, L) and we denote it by d
a

(S, A, L).

From [6], [51], there is a natural projection

π : B?S Ñ S

to its coarse moduli space S and B
?

S is a Deligne-Mumford stack.

2.2.1. Charts. If j0 : P Ñ Q is a Kummer morphism giving a chart for the system
of denominators, then we can give a definition of root stacks using P and Q, which
we denote them by P

?
S and Q

?
S respectively. The chart given by P corresponds to

a morphism
S Ñ [Spec(κ[P])/pP]

where pP = D(Pgp) is the diagonalizable group scheme associated with Pgp, and
the morphism P Ñ Q induces a morphism of quotient stacks

[Spec(κ[Q])/ pQ]Ñ [Spec(κ[P])/pP].

Then we have:
Q?S – Sˆ

[Spec(κ[P])/pP] [Spec(κ[Q])/ pQ]

and we also have the following Cartesian diagram:

Q
?

S //

��

[Spec(κ[Q])/µQ,P] //

��

[Spec(κ[Q])/ pQ]

��
S // Spec(κ[P]) // [Spec(κ[P])/pP]

if P Ñ Div(S) comes from a Kato chart P Ñ OS(S), where µQ,P is the Cartier dual
D(C) of the cokernel C of the morphism Pgp Ñ Qgp, and is a finite abelian group.
The chart in this case is

Q?S – SˆSpec(κ[P]) [Spec(κ[Q])/µQ,P].
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2.2.2. Root stack associated with divisorial log schemes. Now let us do the case for
the divisorial log scheme (S, D) with D simple normal crossing. In this case we
understand that the stack [OS/OˆS ] is isomorphic to DivS, and DivS classifies all
the morphisms

S Ñ [A1/Gm]

where Gm acts on A1 by multiplication, see [47, Example 5.13].
We have a global chart:

P = Nn Ñ Div(S).

Then if we have a Kummer morphism P Ñ Q, we have:

Q?S – Sˆ
[Spec(κ[P])/pP] [Spec(κ[Q])/ pQ]

We make clear for the case that D is a smooth curve in S. Then the line bundle
(OS(D), sD) defines a morphism

S Ñ [A1/Gm].

Let Θd : [A1/Gm]Ñ [A1/Gm] be the morphism of stacks given by the morphism

x P A1 ÞÑ xd P A1; t P Gm ÞÑ td P Gm,

which sends (OS(D), sD) to (OS(D)br, sd
D).

Definition 2.12. ([7]) Let S := d
a

(S, D) be the stack obtained by the fibre product

d
a

(S, D) //

π

��

[A1/Gm]

Θr
��

S
(OS(D),sD)// [A1/Gm].

We call S = d
a

(S, D) the root stack obtained from X by the r-th root construction.

Remark 2.13. S = d
a

(S, D) is a smooth DM stack with stacky locus D := π´1(D),
and D Ñ D is a µr-gerbe over X coming from the line bundle OS(D)|D. For example, the
weighted projective stack P(1, a, a) is a root stack by taking the a-th root construction on
P2 with divisor P1 Ă P2. It is pretty interesting to study how the infinite root stack can
be put into the definition or calculation of Vafa-Witten invariants.

Remark 2.14. (Infinite root stacks) The infinite root stack is a limit version of finite root
stacks, see [50]. We recall the infinite root stack 8

?
S coming from the limit version of the

r-th root stacks.
If A Ñ B is a fixed system of denominators for a log scheme (S, A, L). Consider the

subsystems
"

A Ñ
1
d

B
*

dPN

.

The limit lim
ÐÝd

1
d B
?

S = 8
?

S is the infinite root stack.
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3. MODULI STACK OF STABLE SHEAVES AND STABLE PARABOLIC HIGGS SHEAVES

3.1. Moduli space of parabolic stable sheaves. Let (S, D) be a pair such that S is
a smooth projective surface, D Ă S is a smooth Cartier divisor. Usually we can
let D be a Cartier divisor with normal crossings, then (S, D) naturally defines a
log scheme structure on S. The moduli space of stable parabolic sheaves is also
proved to isomorphic to the moduli space of stable sheaves on root stacks of S, see
[6]. In this paper we don’t use log schemes and only assume that X is a smooth
connected projective curve in S, and we leave the general case to a future project.

Definition 3.1. ([41]) Let E be a torsion-free coherent sheaf on S. A parabolic structure
on E is given by a length d-filtration

E = F0(E) Ą F1(E) Ą ¨ ¨ ¨ Ą Fd(E) = E(´D),

together with a system of weights

0 ď α0, α1, ¨ ¨ ¨ , αd´1 ă 1.

We call E‚ = (E, Fi(E)) a parabolic sheaf associated with the divisor D.
Let Gi(E) = Fi(E)/Fi+1(E). The Hilbert polynomial χ(Gi(E)(m)) is called the i-th

multiplicity polynomial of the weight αi.

Definition 3.2. A parabolic sheaf F‚ is a parabolic subsheaf of E‚ if the following
conditions are satisfied:

(1) F is a subsheaf of E and E/F is torsion free.
(2) Fi Ă Ei for all i.
(3) If Fi Ď Ej for some j ą i, then Fi = Fj.

3.1.1. Parabolic stability and the moduli scheme. As in [41, Definition 1.8], the
parabolic Euler characteristic pa´χ(E‚) of E‚ is defined as:

(3.1.1) χ(E(´X)) +
d´1
ÿ

i=0

αiχ(Gi).

The polynomial pa´χ(E‚(m)) is called the parabolic Hilbert polynomial of E‚ and
the polynomial pa´χ(E‚(m))/ rk(E) is denoted by pa´pE‚(m).

Definition 3.3. The parabolic sheaf of E‚ is said to be parabolic Gieseker stable (resp.
parabolic )if for every parabolic subsheaf F‚ of E‚ with

0 ă rk(F) ă rk(E)

we have

pa´pF‚(m) ă pa´pE‚(m), (resp. pa´pF‚(m) ď pa´pE‚(m)).

The moduli space Mpa := M H,α
pa,(S,D)

of Gieseker semistable parabolic sheaves
is defined as follows. Fix Hilbert polynomials H = (H, H1, ¨ ¨ ¨ , Hd) and α =
(α1, ¨ ¨ ¨ , αl), 0 ď α1 ă ¨ ¨ ¨ ă αd ă 1, the moduli functor

MH,α
pa,(S,D)

: Sch /κ Ñ Sets

by
T ÞÑ / – .

where (#) is the following property for the family of parabolic sheaves E‚ on ST .
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(#): For every geometric point t P T, (E‚,t, α) is a parabolic semistable sheaf and
χ(Et(m)) = H(m), χ((Et/Fi+1(E)t)(m)) = Hi(m), where Fi, t is the filtration

Et = F0(E)t Ą F1(E)t Ą ¨ ¨ ¨ Ą Fd(E)t = Et(´D);

The equivalence relation – is given by:

E‚ – E1‚
if and only if there exist filtrations

E = E0 Ą E1 Ą ¨ ¨ ¨ Ą Em = 0

E1 = E10 Ą E11 Ą ¨ ¨ ¨ Ą E1m = 0
such that

(1) for every geometric point t P T their restriction to Dt provide with Jordan-
Hölder filtrations of E‚,t and E1‚,t, respectively;

(2) gr(E‚) = ‘m
i=1(Ei/Ei+1)‚ is T-flat;

(3) gr(E‚) – gr(E1‚)bT L for some invertible sheaf L on T.

Then from [41, Theorem 3.6], the moduli functor MH,α
pa,(S,D)

is represented by a

quasi-projective scheme Mpa := M H,α
pa,(S,D)

if (H, α) is bounded. The stable part
M s

pa Ă Mpa is an open subscheme.

3.1.2. Moduli space of stable sheaves on root stacks. For the root stack S = d
a

(S, D),
let

p : S Ñ S
be the map to its coarse moduli space, and D := p´1(D) be the stacky divisor on
S . The generating sheaf for S is chosen as

Ξ = ‘d´1
i=0 OS (D

i
r ).

Let CohS be the abelian category of coherent sheaves on S , and Par 1
d
(S, D) the

abelian category of parabolic sheaves on (S, D) with length d. Then [46] defines
two functors:

FS : CohS Ñ Par 1
d
(S, D)

by
E ÞÑ FS (E)

where FS (E)l = p˚(EbOS (´lD)). Another functor

GS : Par 1
r
(S, D)Ñ CohS

by

E‚ ÞÑ
ż Z

gS (E‚)(d, d)

where
şZ gS (E‚)(d, d) is the colimit of wedges:

gS (E‚)(d, m)
fd,m //

hd,m
��

gS (E‚)(d, d)

w(d)
��

gS (E‚)(m, m)
w(m) // G
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where
(1) gS (E‚) : Z0 ˆZ Ñ CohS is a map given by:

(d, m) ÞÑ OS (dD)b p˚Em;

(2) m ě l is an arrow in Z, and the arrow hd,m is induced by the canonical
section of the divisor, the arrow fd,m is induced by the filtration p˚E‚, the
arrow w(r) is a dinatural transformation and G is a sheaf in CohS .

We define that a parabolic sheaf E‚ P Par 1
d
(S, D) to be torsion free if E0 is torsion

free.

Theorem 3.4. ([46], [6]) The functor GS maps torsion free sheaves on S to torsion free
sheaves on S . Moreover, FS and GS are inverse to each other when applied to torsion free
sheaves.

Let T P Schκ be a scheme, and p1 : ST = Sˆκ T Ñ S he the natural morphism.
The family of parabolic sheaves E‚ P Par 1

d
(ST , p˚1 D) is OT-flat if for every l, m(m ą

l) every cokernel El Ñ Em Ñ Ql,m is OT-flat. Then from [46, Lemma 7.9], the
functor GS maps flat families of torsion free parabolic sheaves on S to flat families
of torsion free sheaves on the root stack S . The functor FS maps flat families of
torsion free sheaves on S to flat families of torsion free parabolic sheaves on S.

We have the following result of the corresponding moduli space. First we
explain a bit about the correspondence on the stability. Recall for the root stack S ,
the modified Hilbert polynomial associated with the generating sheaf Ξ is defined
as:

PΞ(E, m) = χ(S , Eb Ξ_ b p˚OS(m)).
Then we can write down

PΞ(E, m) =
dim
ÿ

i=0

αΞ,i
mi

i!
,

where dim(E) is the dimension of the sheaf E. The reduced Hilbert polynomial
for pure sheaves, and we will denote it with pΞ(E); is the monic polynomial with
rational coefficients PΞ(E)

αΞ,dim
.

Definition 3.5. The sheaf E is said to be Gieseker stable (resp. semistable) if for every
subsheaf F Ď E with we have

pΞ(F)(m) ă pΞ(E)(m), (resp.pΞ(F)(m) ď pΞ(E)(m)).

Since Ξ = ‘d´1
l=0 OS (lDred),

(3.1.2) PΞ(E, m) =
d´1
ÿ

i=0

χ(S , EbOS (´lDred)b p˚OS(m)).

This is the same as (3.1.1). Therefore the Gieseker stability of coherent sheaves
on the root stack S is equivalent to the parabolic sheaves on (S, X). Let us fix a
Hilbert polynomial H and let M := M H

S the moduli space of semistable sheaves
with Hilbert polynomial H.

Theorem 3.6. ([46, §7.2], [51]) Let S = d
a

(S, D) be the d-th root stack corresponding to
the smooth divisor D and d ě 1. Fix one Hilbert polynomial H P Q[m] and the generating
sheaf Ξ for S , the moduli space M := M H

S of semistable sheaves with Hilbert polynomial
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H is isomorphic to the moduli space Mpa := M H,α
pa,(S,D)

of semistable parabolic sheaves on
(S, D). The corresponding open stable parts are also isomorphic.

3.2. Moduli space of parabolic Higgs sheaves.

3.2.1. Moduli of parabolic Higgs sheaves. We first review the moduli space of
parabolic Higgs pairs by Yokogawa [55]. We still fix the pair (S, D).

Definition 3.7. A parabolic Higgs sheaf is a pair (E‚, φ), where E‚ is a parabolic sheaf in
Definition 3.1, and

φ : E‚ Ñ E‚ bS KS

is a homomorphism which is called a parabolic Higgs field.

Remark 3.8. The tensor product E‚ b KS is also a parabolic sheaf with (E‚ b KS)α =
Eα bS KS.

Definition 3.9. A parabolic subsheaf F‚ Ă E‚ is called “φ-invariant” if for all 0 ď α ă 1,
φ(Fα) is contained in Fα b KS.

A OS-homomorphism
f : (E‚, φ)Ñ (F‚, φ1)

is said to be a homomorphism of parabolic Higgs pairs if φ1 ˝ f = ( f b idKS) ˝ φ

and f is a parabolic homomorphism of E‚ to F‚. We call (F‚, φ1) a parabolic sub-
Higgs pair of (E‚, φ) if F is a coherent subsheaf of E, Fα Ď Eα for all α and φ|F = φ1.

Definition 3.10. A parabolic Higgs pair (E‚, φ) is said to be Gieseker stable (resp.
parabolic Gieseker semistable) if for every φ-invariant parabolic subsheaf F‚ of E‚ with
0 ‰ F ‰ E, we have

pa´pF‚(m) ă pa´pE‚(m), (resp. pa´pF‚(m) ď pa´pE‚(m))

for m ąą 0.

Remark 3.11. Similarly, we can define the slope µ-stability by

pa´µ(F‚)(m) ă pa´µ(E‚)(m), (resp. pa´µ(F‚)(m) ď pa´µ(E‚)(m)).

Recall that a flat family of parabolic sheaves E‚ over a scheme T is a coherent
OST -module E‚ such that E is fT : ST Ñ T torsion free and all E/Ei are flat
(hence Ei are all flat) over T. A flat family of parabolic Higgs sheaves is a pair
(E‚, φ) of a flat flat family of parabolic sheaves E‚ over a scheme T and an OST -
homomorphism

φ : Eb EbS KS

such that φ(Eα) Ď Eα bS KS for all α.
The moduli functor is defined by: Fix Hilbert polynomials H = (H, H1, ¨ ¨ ¨ , Hd)

and α = (α1, ¨ ¨ ¨ , αd), 0 ď α1 ă ¨ ¨ ¨ ă αd ă 1, the moduli functor

NH,α
pa,(S,D)

: Sch /κ Ñ Sets

by

T ÞÑ
"

(E‚, φ)

ˇ

ˇ

ˇ

ˇ

(E‚, φ) is a flat family of parabolic Higgs sheaves
on ST/T with property (#).

*/
– .

where (#) is the following property for the family of parabolic Higgs sheaves
(E‚, φ) on ST .
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(#): For every geometric point t P T, (E‚,t, φt) is parabolic semistable with

χ(Et(m)) = H(m); χ((Et/Fi+1(E)t)(m)) = Hi(m),

and (F‚)t is the filtration consisting of φ-invariant subsheaves

Et = F0(E)t Ą F1(E)t Ą ¨ ¨ ¨ Ą Fd(E)t = Et(´D).

– is an equivalence relation:

(E‚, φ) – (E1‚, φ1)

if and only if

(1) (E‚, φ) – (E1‚, φ1)bT L for line bundle L on T;
(2) there exist filtrations consisting of φ-invariant subsheaves

E = E0 Ą E1 Ą ¨ ¨ ¨ Ą Em = 0

E = E10 Ą E11 Ą ¨ ¨ ¨ Ą E1m = 0

such that for any geometric point t P T, their restrictions to St
gives a Jordan-Hölder filtration of ((Et)‚, φ) and ((E1t)‚, φ1) respectively,
and gr(E‚, φ) = ‘m

i=0((Ei/Ei+1)‚, φi) is T-flat and that gr(E‚, φ) –

gr(E1‚, φ1)bT L, for some invertible sheaf L on T.

From [55, Theorem 2.9, Theorem 4.6], the functor Npa := NH,α
pa,(S,D)

is

represented by a quasi-projective coarse moduli space Npa = NH,α
pa,(S,D)

over κ.
The stable part N s

pa is given by an open subspace N s
pa Ă Npa.

3.2.2. Moduli of Higgs sheaves on root stacks. Let S := d
a

(S, D) be the d-th root stack.
By choosing the generating sheaf Ξ for S , and fixing a Hilbert polynomial H, the
moduli space N := NH of semistable Higgs sheaves (E, φ) on S can be similarly
defined. Here E P Coh(S) is a torsion free sheaf, and

φ : E Ñ Eb KS

is a section called the Higgs field. The Gieseker stability can be similarly defined
by using the modified Hilbert polynomial pΞ(E) associated with the generating
sheaf Ξ, and φ-invariant subsheaves F Ă E.

In this section we show that the moduli space N := NH of semistable Higgs
sheaves (E, φ) on S is isomorphic to the moduli space Npa of semistable parabolic
Higgs sheaves (E‚, φ) on (S, D), thus generalizing the result of [46], [6].

We first generalize the two functors FS , GS before to the abelian category of
Higgs sheaves. Let HiggS be the abelian category of Higgs sheaves (E, φ) on S ,
and let Higgpa

(S,D)
be the abelian category of parabolic Higgs sheaves (E‚, φ) on

(S, D). There exists a functor

(3.2.1) Fφ
S : HiggS Ñ Higgpa

(S,D)

such that (E, φ) is mapped to an element in Higgpa
(S,D)

as follows:

(1) E ÞÑ FS (E) = p˚(E bOS (´lDred)) where p : S Ñ S is the map to its
coarse moduli space, and D = p´1(D);
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(2) the section φ : E Ñ Eb KS will induce a section

φ : FS (E)Ñ FS (E)b KS

which can be obtained as follows.
We can take Dk

red the k-th order infinitesimal neighborhood of Dred.
Then Dr

red = D. From [7, Equation 3.44],

KS = p˚(KS b
d´ 1

d
OS(D)).

Then the section φ : E Ñ Eb KS induces a morphism for any l

φ : EbOS (´lDred)Ñ EbOS (´lDred)b KS .

Then applying p˚:

p˚(EbOS (´lDred)b KS ) = p˚(EbOS (´lDred)b p˚(KS b
d´ 1

d
OS(D)))

= p˚(EbOS ((d´ 1)´ lDred)b p˚KS),

and we get a morphism

p˚φ : p˚(EbOS (´lDred))Ñ p˚(EbOS (´lDred)b KS ).

Since r´ 1´ l ě ´l, this morphism must factor through

p˚(EbOS (´lDred))Ñ p˚(EbOS (´lDred)b p˚KS)

Ñ p˚(EbOS ((d´ 1)´ lDred)b p˚KS),

where OS (´lDred) Ñ OS (´lDred) is induced from the canonical section
of divisors. Hence we get the section

φ : p˚(EbOS (´lDred))Ñ p˚(EbOS (´lDred)b KS)

for any l, thus a section

φ : FS (E)Ñ FS (E)b KS.

On the other hand, the functor

Gφ
S : Higgpa

(S,D)
Ñ HiggS

is given as follows. First we have for a pair (E‚, φ) P Higgpa
(S,D)

,

E‚ ÞÑ
ż Z

gS (E‚(d, d)).

We construct a Higgs field on
şZ gS (E‚(d, d)). The Higgs field on E‚ is φ : E‚ Ñ

E‚ b KS. Therefore

p˚φ : (p˚E‚)bOS (lDred)Ñ (p˚E‚)bOS (lDred)b p˚KS
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gives the Higgs field on the pullback. From the diagram of wedges:
(3.2.2)

gS (E‚)(d, d)
w(d)

++

��

gS (E‚)(d, m)

fd,m 11

hd,m
,,

��

G

rϕ

��

gS (E‚)(m, m)

w(m)
11

��

gS (E‚)(d, d)b p˚KS

w(r)
++

gS (E‚)(d, m)b p˚KS

fd,m 11

hd,m
,,

G b p˚KS.

gS (E‚)(m, m)b p˚KS

w(m) 11

Since KS = p˚KS b p˚( d´1
d OS(D)) = p˚KS b OS ((d ´ 1)Dred), we have the

following diagram:
(3.2.3)

gS (E‚)(d, d)
w(d)

**

��

gS (E‚)(d, m)

fd,m 11

hd,m
++

��

G

rϕ

��

gS (E‚)(m, m)

w(m)
11

��

gS (E‚)(r, r)b KS

w(d+(d´1))
**

gS (E‚)(d, m)b KS

fd+(d´1),m 11

hd+(d´1),m
++

G b KS .

gS (E‚)(m, m)b KS

w(m) 11

and the vertical arrows must factor through the vertical arrows in (3.2.2). Therefore
by taking the colimit, we have a Higgs field on the coend:

φ :
ż Z

gS (E‚(d, d))Ñ
ż Z

gS (E‚(d, d))b KS .

Recall that a parabolic sheaf E‚ P Par 1
d
(S, D) is torsion free if E = E0 is torsion

free. Thus the functor Gφ
S sends torsion free sheaves on S to torsion free sheaves

on the corresponding root stack S .

Proposition 3.12. The functor Fφ
S sends flat families of torsion free Higgs sheaves on

S to flat families of torsion free parabolic Higgs sheaves on S. Similarly, the functor Gφ
S

sends flat families of torsion free parabolic Higgs sheaves on S to flat families of torsion free
Higgs sheaves on the root stack S .

Proof. This is result is proved for the functors FS and GS from [46, Lemma 7.9].
It is enough to check the Higgs fields φ : E Ñ Eb KS and φ : E‚ Ñ E‚ b KS for
Higgs pairs. Since the Higgs fields in the functors Fφ

S and Gφ
S are preserved by

families and we are done. �

Therefore for the generating sheaf Ξ = ‘
d´1
l=0 OS (lDred), the Hilbert

polynomials (3.1.2) of the Higgs pairs on the root stack S is the same as the
parabolic Hilbert polynomial (3.1.1). Thus the Gieseker stability of Higgs pairs and
parabolic Higgs pairs are equivalent by choosing φ-invariant sub Higgs sheaves.
Therefore we have the following result on the moduli spaces:
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Theorem 3.13. Let S = d
a

(S, D) be the root stack of S with respect to the smooth divisor
D. Choosing the generating sheaf Ξ = ‘d´1

l=0 OS (lDred), and fixing some modified Hilbert
polynomial H P Q[m]. Then the moduli space NH := NH(S) of semistable Higgs pairs
on the root stack S is isomorphic to the moduli space Npa := N H,α

pa,(S,D)
of semistable

parabolic Higgs pairs on (S, D). Their corresponding stable open subspaces N s
H and N s

pa
are also isomorphic. �

4. MODULI STACK OF RELATIVE HIGGS PAIRS

In this section we define the relative moduli space of Higgs pairs on the
root stack S with respect to the stacky divisor D. We relate it to the relative
parabolic Higgs pairs on (S, D), relative moduli space of parabolic stable sheaves
of Kapranov and the Vafa-Witten invariants for the moduli space of Higgs sheaves
on S .

4.1. Relative moduli space, after Kapranov. Let S = d
a

(S, D) be a d-th root stack
associated with the smooth divisor D Ă S, and D = p´1(D) be the stacky divisor.
Let pSD be the formal completion of S along the divisor D Ă S , i.e., if ID is the
ideal sheaf of D in S , then

pSD = lim
ÝÑ

n
(S/In

D).

Then pSD is a stftformal scheme over the discrete valuation ring Spf(R). We can
understand this formal scheme pSD as the formal thickening of D Ă S and also
the formal neighborhood of D in S , as in [34, §5]. The central fibre if a κ = R/(t)
stack D, and the generic fibre pSDzD = ( pSD)η is a non-archimedean space over the
non-archimedean field K = κ((t)).

4.1.1. Formal moduli of relative sheaves. For the root stack S , the generating sheaf
Ξ = ‘

r´1
l=0OS (lDred). Since pSD is the formal completion of S along D, from the

relative GAGA [9], the generating sheaf Ξ gives a generating sheaf pΞ on pSD . From
[28, §4], when fixing some Hilbert polynomial H associated with the generating
sheaf, we have the formal moduli stack xMR( pSD , H) of stable coherent sheaves on
pSD with Hilbert polynomial H.

We define a relative version of the moduli space of stable sheaves. Fix a stable
sheaf pE0 on pSDzD, let xM H

R ( pSD ;D) be the moduli functor that sends a formal
scheme T over Spf(R) to the isomorphic classes of families of stable sheaves pE
on pSD with Hilbert polynomial H such that

pE|
( pSD)η

– pE0.

Theorem 4.1. The moduli stack xM H
R ( pSD ;D) is a subformal moduli stack of

xMR( pSD , H).

Proof. From [24, Theorem 4.10], we have

( xMR( pSD , H))η

ψ
– MK(( pSD)η , H),



VW INVARIANTS VIA STACKS II: ROOT STACKS 23

where MK(( pSD)η , H) is the moduli space of stable coherent sheaves on the K-
analytic space ( pSD)η with Hilbert polynomial H. Since the fixed point pE0 P

MK(( pSD)η , H), then
ψ´1(pE0) – ( xMR( pSD , H))η

and xM H
R ( pSD ;D) is a formal substack of xMR( pSD , H). �

Following [34, §(2.2)], for such a pair (S ,D), and a fixed E0 on S0 := SzD, we
have the following moduli functor:

MR(S ;D, H) : Schκ Ñ

#

E

ˇ

ˇ

ˇ

ˇ

ˇ

E is a flat family of coherent sheaves
on ST such that E|(SzD)T–(E0)S0

T

.

+/
– .

Kapranov [34, §(2.2)] proves that the functor MR(S ;D, H) is represented by an
ind-scheme which we still denote it by MR(S ;D, H).

Lemma 4.2. The ind-scheme MR(S ;D, H) can be extended to a formal scheme
{MR(S ;D, H) over Spf(R).

Proof. We can assume that the fixed E0 on S0 := SzD has fixed determinant
det(E0) = OS0 . Then if E is such a stable coherent sheaf on S such that E|S0 = E0,
let

ι : S0 ãÑ S
be the inclusion and m the ideal sheaf of D in OS , then

E Ă ι˚E0

must be contained in m´N E0/mN E0 for some N ąą 0, therefore a closed
subscheme, which we denote it by

MR(S ;D, H)N ,

who contains all the stable sheaves E on S such that E Ă ι˚E0 is in the Quot scheme
Quot(m´N E0/mN E0). If we consider all such N P Z, then we get a direct limit

lim
ÝÑ

N
MR(S ;D, H)N

of all such closed subschemes. Let us take a base change to Spf(R) from Spf(κ),
then we get a formal scheme {MR(S ;D, H) over Spf(R). �

4.1.2. Relative parabolic moduli space. In this section we define the parabolic version
of the relative moduli space of stable sheaves. Fix a pair (S, D), S0 := SzD and a
stable coherent sheaf E0 on S0 again, let M H,α

pa (S; D) be the moduli stack functor of
parabolic relative stable sheaves with Hilbert polynomial H, i.e., it is the functor
from the category of schemes to groupoids that sends a scheme T over κ to the
families of the following triples (E, τ, π) over T:

(1) E is a family of stable shaves over S with Hilbert polynomial H;
(2) τ : E|S0 – E0 is an isomorphism;
(3) π is a parabolic structure on E|D as in Definition 3.1.

From [34, Corollary (3.1.2)], M H,α
pa (S; D) is represented by a fine moduli space

if the intersection number D2
S is negative. In general, similar to Lemma 4.2,

M H,α
pa (S; D) can be extended to a formal scheme over Spf(R).
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Remark 4.3. The method to prove the above result is as follows. First there exists a formal
moduli scheme xM H,α

R,pa(
pSD; D) of stable sheaves pE on pSX such that pE|S0 – E0 and π is a

parabolic structure on pE|D. Similar proof as in Lemma 4.2 gives the result.

4.2. Formal and relative moduli of Higgs pairs. Let pS be a stft formal scheme
over R and let us fix a Hilbert polynomial H P Q[m]. In [28, §4] the formal moduli
scheme xM H

R (pS) of stable sheaves pE with Hilbert polynomial H is defined and
constructed. We generalize this construction to the formal moduli of Higgs pairs.

Let us first define the Higgs pairs over a locally Noetherian scheme. Let T be a
locally noetherian scheme, and SchT the category of coherent sheaves over T .

Definition 4.4. Let X/T be a projective scheme and OX(1) the Serre line bundle. Fix a
Hilbert polynomial H P Q[m], define the functor

N H
T ,pa(X) : SchT Ñ Sets

such that

 

T 1 Ñ T
(

ÞÑ

$

&

%

E‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

‚ : E‚ is a flat family of coherent sheaves
on T 1 with Hilbert polynomial H;

‚ : φ : E‚ Ñ E‚ b KT 1 a Higgs field.

,

.

-

/
– .

Here the equivalence relation – means that

(E‚, φ) „ (E1‚, φ1)

if and only if
(E‚, φ) – (E1‚, φ1)bT 1 L

for some L P Pic(X).

Theorem 4.5. The functor N H
T ,pa(X) is an algebraic stack locally of finite type over T .

Proof. We need to check the conditions (1), (2), (3), (4) of Theorem 5.3 in [1], and
the checking is the same as [28, Theorem 3.3]. We omit the details. �

Let Tm := Spec(R/(tm+1)), where t is a uniformizer of the discrete valuation
ring R. Then from [28, Proposition 4.8], we have

Theorem 4.6. Let pS be a stft formal scheme over R, and let

pSm := pSˆR Tm.

Then
lim
ÝÑ

m
N H

Tm ,pa(
pSm) – N H

R,pa(
pS),

where N H
R,pa(

pS) is the formal moduli stack of stable parabolic formal sheaves over pS with
Hilbert polynomial H.

Corollary 4.7. ([28, Theorem 4.10]) We have

(N H
R,pa(

pS))η – N H
K,pa(

pSη)

where N H
K,pa(

pSη) is the moduli stack of stable parabolic coherent sheaves over the K-

analytic space pSη with Hilbert polynomial H.



VW INVARIANTS VIA STACKS II: ROOT STACKS 25

The formal relative moduli space of parabolic Higgs pairs can be similarly
defined. Let pSD be the formal completion of S along the divisor D, and let

pSD = pS0
D.

The formal relative moduli stack N H
R,pa(

pS; D) is the formal moduli scheme of

formal parabolic stable sheaves pE‚ on pSD such that

pE‚|
pS0

D
– pE0

for a fixed pE0 over pS0
D. The same arguments as in Theorem 4.1 shows that

N H
R,pa(

pS; D) is a formal subscheme of N H
R,pa(

pS).

5. RELATION TO THE VAFA-WITTEN INVARIANTS

In this section we relate the relative moduli spaces of stable sheaves and relative
moduli space of Higgs sheaves on a pair (S, D) to the Vafa-Witten invariants for
(S, D) and the Eisenstein series of the associated curve D.

In Section 5.1 and Section 5.2 we borrow the notation X = D to represent a
smooth projective curve.

5.1. Eisenstein series. We review the basic materials of the classical unramified
geometric theory of Eisenstein series following [20], [37], which was recalled in
[34, §4].

Let r ě 1 be an integer, and X a smooth projective curve over a finite field Fq.
We denote by F = Fq(X) the function field of X. Let Bunr

X/Fq
be the moduli stack

of rank r vector bundles L on X, which is an algebraic stack locally of finite type.
The connected components of Bunr

X/Fq
is given by a stack

Bunr,l
X/Fq

of locally of finite type and degree l. The stack Bunr,l
X/Fq

is smooth of dimension

r2(g´ 1), where g = gX is the genus of X.
We consider the stack over Fq:

BunX/Fq ,(1r)

which classifies the flags

L‚ = (0 = L0 Ă L1 Ă ¨ ¨ ¨ Ă Lr = L)

where each Li is a vector bundle of rank i on X, locally direct factor of Li+1 as an
OX-locally free module for i = 0, ¨ ¨ ¨ , r ´ 1. This stack is also an algebraic stack
over Fq, with connected components parametrized by:

λ = (λ1, ¨ ¨ ¨ , λr) P Zr

where
Bunλ

X/Fq ,(1r)

classifies the L‚ flags as above such that Ai = Li/Li+1 is an invertible OX-module
of degree λi for i = 1, ¨ ¨ ¨ , r. The stack BunX/Fq ,(1r) is also smooth, locally of finite
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type over Fq and

dim(Bunλ
X/Fq ,(1r)

) =
r(r + 1)

2
(g´ 1) +

ÿ

1ďiăjďr

(λj ´ λi).

We have the following morphisms of stacks:

BunX/Fq ,(1r)

π

��

ρ

&&
Bunr

X/Fq
(PicX/Fq)

r

by:
π(L‚) = L;

ρ(L‚) = (L1/L0, ¨ ¨ ¨ ,Lr/Lr´1) = (A1, ¨ ¨ ¨ ,Ar).

We denote by

πλ : Bunλ
X/Fq ,(1r)

Ñ Bunr,l
X/Fq

and

ρλ : Bunλ
X/Fq ,(1r)

Ñ

r
ź

i=1

Picλi
X/Fq

the restrictions of π and ρ respectively to Bunλ
X/Fq ,(1r)

where l = λ1 + ¨ ¨ ¨ + λr.

The morphism π is representable and locally of finite type and in fact πλ is
representable and quasi-projective for each λ P Zr.

Recall the ring of adeles AF of F, and the ring of integers OF, then Weil’s
observation shows that

Bunr
X/Fq

(Fq)
„
ÝÑ

[
GLr(F)zGLr(AF)/GLr(OF)

]
and

BunX/Fq ,(1r)(Fq)
„
ÝÑ

[
Br(F)zGLr(AF)/GLr(OF)

]
where Br(F) Ă GLr(F) is the Borel subgroup of upper triangular matrices.

Moreover, π is identified with the canonical projection:[
Br(F)zGLr(AF)/GLr(OF)

]
Ñ

[
GLr(F)zGLr(AF)/GLr(OF)

]
Finally, the inclusion Br Ă GLr induces an equivalence of categories[

Br(F)zBr(AF)/GLr(OF)
]
Ñ

[
GLr(F)zGLr(AF)/GLr(OF)

]
and ρ is identified with the projection[

Br(F)zBr(AF)/GLr(OF)
]
Ñ

[
FˆzAˆ

F /OˆF
]r

by

Br(F) ¨ b ¨ Br(OF) ÞÑ (Fˆb11OˆF , ¨ ¨ ¨ , FˆbnnOˆF ).
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We define Eisenstein series. For each L P Bunr
X/Fq

(Fq), let Γ(L; λ) be the

scheme of B-structures on L. This is the fibre of πλ above L P Bunr,l
X/Fq

. The
Eisenstein series is the generating function

(5.1.1) EL(z) =
ÿ

λPZr ,
l=λ1+¨¨¨+λr

χ(Γ(L; λ))zl

We also introduce another formula as in [37, §3]. Let

BunX/Fq ,(1r)

be the stack of generalized flags

L1‚ = (0 = L10 Ă L11 Ă ¨ ¨ ¨ Ă L1r = L)

where each L1j is a locally free OX-module rank j on X, but not necessarily locally a
direct factor of L1j+1 for ij = 0, ¨ ¨ ¨ , r´ 1. This is an algebraic stack locally of finite
type and smooth over Fq, containing BunX/Fq ,(1r) as an open dense subset. Let

BunX/Fq ,(1r)

π

��

ρ

&&
Bunr

X/Fq
(PicX/Fq)

r

be the two morphisms of stacks over Fq defined as follows:

π(L1‚) = L1r = L;

ρ(L1‚) = (det(A11), ¨ ¨ ¨ , det(A1r))
where for i = 1, ¨ ¨ ¨ , r, A1j = L1j/L1j´1 is a coherent OX-module of generic rank 1
and

det(A1j) = (ΛjL1j)b (Λj´1L1j´1)
b´1

is the invertible determinant OX-module of A1j.
The connected components of BunX/Fq ,(1r) are still parametrized by Zr and we

denote by

πλ1 : Bunλ1

X/Fq ,(1r) Ñ Bunr,λ11+¨¨¨+λ1r
X/Fq

and

ρλ1 : Bunλ1

X/Fq ,(1r) Ñ

r
ź

i=1

Pic
λ1i
X/Fq

the restrictions of π and ρ respectively, with the connected components indexed
by λ1 P Zr.

The morphism π is representable and locally of finite type and in fact, πλ1 is
representable and projective for each λ1 P Zr.

We give the definition of modified Eisenstein series. Fix a L P Bunr,l
X/Fq

, let

Γ(L, λ1) be the scheme of generalized flags over L, which is the fibre of πλ1 . It is a
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scheme over Fq. Define the “modified Eisenstein series” by:

(5.1.2) EL(z) =
ÿ

λ1PZr ,
l=λ11+¨¨¨+λ1r

χ(Γ(L; λ1))zl

Here are two results in the rank two case.

Proposition 5.1. [37] We have:

EL(z1, z2) =
ÿ

(a1,a2)PZ2

χ(Γa1,a2(L)z
a1
1 za2

2 = ζ(z2/z1) ¨ EL(z1, z2),

where ζ(q) is the zeta function.

Proposition 5.2. [34, Proposition 4.2.2.] The series EL(z1, z2) represents a rational
function with only poles being simple poles along the line z1 = z2. The series satisfies the
functional equation:

EL(z1, z2) = (z1/z2)
2´2gEL(z2, z1).

Remark 5.3. One can define the motivic version of Eisenstein series as in [34], and
Proposition 5.2 can be proved for motivic Eisenstein series. We only deal with Euler
characteristic in this paper, and leave the motivic Eisenstein series and how it is related
to motivic Vafa-Witten invariants for future work.

5.2. Moduli of Higgs pair on curves. In this section we review the moduli stack of
Higgs pairs on the smooth curve X, which is the moduli space of Hitchin systems.

Let us fix a divisor K =
ř

i ni ¨ [xi] on X which is effective. The Hitchin moduli
stack N r

K classifies pairs
(E, φ)

where E is a rank r vector bundle on X, and

φ P Hom(E, EbOX(K))

is a section which is allowed to have a pole of order at most ni at xi. This stack
N r

K is an algebraic stack locally of finite type. If we fix some stability condition on
(E, φ), the moduli stack will be a scheme.

Remark 5.4. (1) In some references [18], [17], the moduli stack of Hitchin system
only consider the pairs (E, φ) such that φ P Hom(E, E b ωX). It is natural to
study the generalized Higgs pairs on X, since the restriction of a Higgs pair (E, φ)
on a projective surface (S, X) to X gives a generalized Higgs pair.

(2) There is a morphism from N r
K to an affine space

AK =
à

i
H0(X,OX((mi + 1)K))

where the mi’s are the exponents of GLr. This morphism is called the Hitchin
fibration. We hope to return to this morphism later to see if it gives some new
phenomenon of the Vafa-Witten invariants.

We let N K
X/Fq ,(1r) be the stack of generalized flags

E1‚ = (0 = E10 Ă E11 Ă ¨ ¨ ¨ Ă E1r = E)
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such that E1‚ P BunX/Fq ,(1r), (E, φ) is a Higgs pair in N K
X/Fq

, and the Higgs field φ

gives a section φ : E1i Ñ E1i bOX(K). Then there exist morphisms of stacks:

N K
X/Fq

π

��

ρ

%%
Bunr

X/Fq
(PicX/Fq)

r

such that
π(E1‚, φ) = E1r = E

ρ(E1‚, φ) = (det(A11), ¨ ¨ ¨ , det(A1r))

as before. The connected components of N K
X/Fq are still parametrized by Zr, and

we denote by

πλ1 : N K,λ1

X/Fq ,(1r) Ñ Bunλ11+¨¨¨+λ1r
X/Fq

and

ρλ1 : N K,λ1

X/Fq ,(1r) Ñ

r
ź

j=1

Pic
λ1j
X/Fq

the restriction of π and ρ respectively, with the connected components indexed by
λ1 P Zr.

The morphism π is representable and locally of finite type and in fact, πλ1 is
representable and quasi-projective for each λ1 P Zr. Fix a E P Bunr,l

X/Fq
, we let

N(E, λ1)

be the scheme of generalized flags over E with Higgs field φ, which is the fibre of
πλ1 . We form the series

(5.2.1) NE(z) =
ÿ

λ1PZr ,
l=λ11+¨¨¨+λ1r

χ(N(E; λ1))zl

We call it the corresponding Eisenstein series of Higgs pairs. We have a
generalization of functional equation for Eisenstein series.

Proposition 5.5. In the case of rank r = 2, the series NE(z) represents a rational function
with only poles being simple poles along z1 = z2. It satisfies the functional equation:

NE(z1, z2) = (z1/z2)
2´2gNE(z2, z1).

Proof. The proof in [34, §(4.2.2)] works in the case of Higgs pairs. We provide an
argument here in the motivic level. The measure µ is the motivic measure in the
Grothendieck ring K0(Varκ) of κ-varieties, which is generated by [Z] where Z is a
quasi-projective variety. The relations are given by [Z] = [Y] + Z´Y for a closed
Y Ă Z and [Z1] ¨ [Z2] = [Z1 ˆ Z2]. We use L to represent the motivic measure of
the affine line A1

κ .
In this case let

pλ11,λ12
: N(E; λ1)Ñ Picλ11

(K)
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be the projection. Let 0 = E10 Ă E11 Ă E12 = E be a filtration of E, then pλ11,λ12
sends it to E11 in the Picard group. If we fix the element E11 in the Picard group, the
preimages p´1

λ11,λ12
(E11) contains all the diagrams:

E11
ρ //

φ1
��

E

φ

��
E11 bOX(K)

ρ1 // EbOX(K)

modulo isomorphisms. Since once the inclusion ρ, ρ1 and φ is fixed, then the
Higgs field φ1 is determined by the commutative diagram. Then this space
is an affine bundle over the projective space P(Hom(E11, E)) with rank rk =

dim(E, E bOX(K)). Thus the coefficient of zλ11
1 zλ12

2 with λ11 + λ12 = l = deg(E)
in NE(z1, z2) is given by

ż

E11PPicλ11
(X)

Ldim Hom(E11,E) ´ 1
L´ 1

LrkdµE11

and the coefficient at the same monomial in (Lz1/z2)
2´2gNE(Lz2, L´1z1) is given

by:
ż

E11PPicλ12+2´2g(X)
Lλ12´λ11+2´2g Ldim Hom(E21 ,E) ´ 1

L´ 1
LrkdµE21

Now if we let

σ : Picλ11
(X)Ñ Picλ12+2´2g(X); E11 ÞÑ (E11)

˚ bΛ2Ebω˚X ,

the Riemann-Roch theorem tells us that

dim Hom(E11, E)´ dim Hom(E21 , E) = λ12 ´ λ11 + 2´ 2g.

So the difference of the coefficients of zλ11
1 zλ12

2 in the two side of NE(z1, z2) =

(z1/z2)
2´2gNE(z2, z1) is given by:

ż

E11PPicλ11
(X)

Lλ12´λ11+2´2g ´ 1
L´ 1

LrkdµE11
= µ(Picλ11

(X)) ¨
Lλ12´λ11+2´2g ´ 1

L´ 1
Lrk.

The Picard groups satisfy the condition µ(Picλ11
(X)) = µ(Pic0(X)) and then the

difference between the two side of NE(z1, z2) = (z1/z2)
2´2gNE(z2, z1) is given by:

µ(Pic0(X))

L´ 1

ÿ

λ11+λ12=deg(E)

(Lλ12´λ11+2´2g ´ 1)zλ11
1 zλ12

2 ¨Lrk

=
µ(Pic0(X))

L´ 1

(
Lrkzdeg(E)

2 Ldeg(E)+2´2gδ

(
z1

L2z2

)
´Lrkzdeg(E)

2 δ

(
z1

z2

))
where δ(z) =

ř

nPZ zn is the Fourier series of the delta-function at 1. Then we
apply [34, Lemma (1.3.4)] and letting L = 1 the result follows. �
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5.3. The case that the divisor D = P1. In this section we study a special case that
the self-intersection index of D in S, which is denoted by D2

S, is a negative integer.
Still let S0 = SzD, and fix a sheaf E0 of rank r on S0.

Let M H(S; D) be the moduli stack of relative stable coherent sheaves E on S
with Hilbert polynomial H such that

E|S0 = E0.

From Lemma 4.2, the functor is represented by an ind-scheme. But in the case that
the self-intersection number DS is negative, from [34, Theorem 2.21] M H(S; D) is
represented by a scheme.

Recall that pSD is the formal completion of S along the smooth divisor D, which
is a stft formal scheme over R with the underlying scheme X. From Theorem 4.1
xM H

R (pSD) is a formal scheme and xM H
R (pSD; D) is a formal subscheme of xM H

R (pSD).

Theorem 5.6. The formal completion {M H(S)M H(S;D) of M H(S) along the subscheme

M H(S; D) is isomorphic to the formal scheme xM H
R (pSD; D).

Proof. Let T be a scheme and F Ñ T a family of stable torsion free sheaves with
Hilbert polynomial H such that

F|S0ˆT – E0
S0ˆD.

Let i : S0 ãÑ S be the inclusion. Then F must be some stable subsheaf in

i˚E|S0ˆT = i˚E0.

Let m Ă OS be the ideal sheaf of D in S. Then from [34, §2.2.2],

F Ă Quot(m´N/mN F0)

is a closed subscheme of the quot scheme for some N ąą 0. And also in this case
since the moduli space M H(S; D) is scheme, and we can take F Ñ T a family of
stable torsion free sheave for T Ñ M H(S; D). Taking the formal completion

pF Ñ pT

of the family gives an element in xM H
R (pSD; D)(pT). Then the result follows since

from [28, Proposition 4.8], xM H
R (pSD) –

{M H(S). �

5.3.1. Eisenstein series for the formal neighborhoods. Let us write down the Eisenstein
series for the pair (S ,D), where S is the root stack S = d

a

(S, D) and D = p´1(D).
Note that we have made d = r, the rank of the coherent sheaves will be the same
as the d.

Similar proof as in [34, §2.2.2] shows that we have a moduli scheme

M H(S ;D)

of relative stable coherent torsion free sheaves E on S with Hilbert polynomial H
ad generating sheaf Ξ such that E|S0 = E0, a fixed stable sheaf.

Let pSD be the formal completion of S along X . We have the formal moduli
space

xM H
R ( pSD ;D)
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of stable sheaves pE on pSD with fixed polynomial H and the corresponding
generating sheaf Ξ such that pE|

pS0
D
– pE0. Then Theorem 5.6 gives:

Proposition 5.7.
xM H

R ( pSD ;X ) – xM H(S)M H(S ;D),

the formal completion of M H(S) along M H(S ;D).

We have similar results for the moduli of Higgs pairs. Let xN H
R ( pSD ;D) be the

formal moduli scheme of relative formal Higgs pairs

(pE, φ)

such that pE|
pS0
D
= pE0 and φ : pE Ñ pEb K

pSD
is the Higgs field.

Also let N H(S ;D) be the moduli stack of relative Higgs pairs (E, φ) such that
E is a stable torsion free sheaf on S with Hilbert polynomial H, E|S0 = E0 and
φ : E|S0 Ñ E|S0 b KS0 is a section. Then we have:

Proposition 5.8. The formal scheme xN H
R ( pSD ;D) is isomorphic to the formal completion

of N H(S) along the subscheme N H(S ;D). �

For a fixed Hilbert polynomial H P Q[m] corresponding to a generating sheaf
Ξ on S , we take H coming from a K-group class c P K0(S) – K0( pS) and write
the formal moduli scheme xM H

R ( pSD ;D), xN H
R ( pSD ;D) as xM c

R(
pSD ;D), xN c

R(
pSD ;D)

repectively.
Let us explain the generating functions. We fix the filtration

F0K0(S) Ă F1K0(S) Ă F2K0(S)
where FiK0(S) is the subgroup of K0(S) such that the support of the elements in
FiK0(S) has dimensionď i. The orbifold Chern character morphism is defined by:

(5.3.1) ĂCh : K0(S)Ñ H˚CR(S , Q) = H˚(IS , Q)

where H˚CR(S , Q) is the Chen-Ruan cohomology of S . The inertia stack

IS = S
ğ

\
r´1
i=1 Ci

where each Ci = C is the stacky divisor of S . We should understand that the inertia
stack is indexed by the element g P µr, Sg – C is the component corresponding to
g. It is clear that S1 = S and Sg = C if g ‰ 1. Let ζ P µr be the generator of µr.
Then

H˚(IS , Q) = H˚(S)
à

‘
r´1
i=1 H˚(Ci),

where Ci corresponds to the element ζ i. The cohomology of H˚(Ci) is isomorphic
to H˚(C). For any coherent sheaf E, the restriction of E to every Ci has a µr-action

such that it acts by e2πi fi
r , and we let

(5.3.2) ĂCh(E) = (Ch(E),‘r´1
i=1 Ch(E|Ci )),

where
Ch(E) = (rk(E), c1(E), c2(E)) P H˚(S),

and

Ch(E|Ci ) =

(
e2πi fi

r rk(E), e2πi fi
r c1(E|Ci

)
P H˚(C).
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In order to write down the generating function later. We introduce some
notations. We roughly write

ĂCh(E) = (ĂChg(E))

where ĂChg(E) is the component in H˚(Sg) as in (5.3.2). Then define:

(5.3.3)
(
ĂChg

)k
:=
(
ĂChg

)
dimSg´k

P HdimSg´k(Sg).

The k is called the codegree. In our inertia stack Sg is either the whole S , or C,
therefore if we have a rank 2 C˚-fixed Higgs pair (E, φ) with fixed c1(E) = ´c1(S),
then

(
ĂChg

)2
(E) = 2, the rank; while

(
ĂChg

)1
(E) =

#

´c1(S), g = 1;

2e2πi fi
r , g = ζ i ‰ 1.

Also we have (
ĂChg

)0
(E) =

#

c2(E), g = 1;

e2πi fi
r c1(E|Ci ), g = ζ i ‰ 1.

We introduce variables q to keep track of the second Chern class n = c2(E) of
the torsion free sheaf E, q1, ¨ ¨ ¨ , qr´1 to keep track of the classes ni = c1(E|Ci ) for
i = 1, ¨ ¨ ¨ , r´ 1. Let q = (q, q1, ¨ ¨ ¨ , qr´1).

Definition 5.9. We define:

Efor(q) = E
pSD ,pE0(q) =

ÿ

cPK0(S)
χ( xM c

R(
pSD ;D))qc

and
Ffor(q) = F

pSD ,pE0(q) =
ÿ

cPK0(S)
χ(xN c

R(
pSD ;D))qc

where for the formal schemes, the Euler characteristic χ( xM c
R(

pSD ;D)) and
χ(xN c

R(
pSD ;D)) are defined using étale cohomology. Here qc = qn ¨ qn1

1 ¨ ¨ ¨ q
nr´1
r´1 .

Let us go back to the case that the pair is (S, D) for smooth projective surface
S and D Ă S a smooth divisor. Then we consider q1, q2, ¨ ¨ ¨ , qr´1 will count the
parabolic degree of the rank r torsion free sheaves restricted to D.

Let us prove a functional equation at rank r = 2 case.

Proposition 5.10. (Functional equation) In the case of rank r = 2, the series Efor(q)
represents a rational function with only poles being simple poles along q1 = q2. It satisfies
the functional equation:

Efor(q, q1, q2) = (q1/q2)
2´2gEfor(q, q2, q1).

Proof. From the definition of the moduli space xM c
R(

pSD ;D), any formal sheaf on
pSD is supported on the curve D. So the series Efor(q) is just N(E; λ1). Hence
from Proposition 5.2.1, NE(z) satisfies the function equation, and Efor(q, q1, q2)
also satisfies the functional equation. �
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5.3.2. Blow-up formula for Vafa-Witten invariants. In this section we prove a blow-
up formula for the Vafa-Witten invariants vw in [48], [49]. We also talk about the
stacky case defined in [25]. Note that in [15], Goeschett-Kool proved a blow-up
formula for virtual Euler numbers.

Let S be a projective surface. Recall that in [48, §6], fixing a Hilbert
polynomial of Gieseker stable Higgs pairs is equivalent to fixing the topological
data (r, c1, c2) P H˚(S, Z), with r ą 0. Then the Vafa-Witten invariants are given
by:

VWr,c1,c2(S) =
ż

[NKr,c1,c2 (S)
C˚ ]vir

1
e(Nvir)

where NK
L is the moduli space of stable Higgs pairs (E, φ) with det(E) = L, φ is

trace-free and c1(L) = c1. The moduli space NK
L admits a symmetric obstruction

theory and a C˚-action by scaling the fibres. The invariants above are defined by
virtual localization of Graber-Pandharipande [12].

As recalled in §4.1, we are mainly interested in the second Vafa-Witten
invariants vw which are defined by

vwr,c1,c2(S) = χ(NK
L , νN )

where νN is the Behrend function and χ(NK
L , νN ) is the weighted Euler

characteristic weighted by the Behrend function in [2]. The moduli space NK
L is

non-compact, but there exists a C˚-action on NK
L by scaling the Higgs fields. We

have:

vwr,c1,c2(S) = χ

((
NK

L

)C˚

, νN |
(NKL )

C˚

)
.

The C˚-action on NK
L has two type of fixed components, see [48, §7], and [25, §3.5]:

(1) The Higgs field φ = 0. Then in this case the fixed locus M (1) is isomorphic
to the moduli space of stable sheaves on S with determinant L. One can
think of the moduli space NK

L over such locus as the dual of the obstruction
sheaf ObM (1) , see [22]. Hence from the main results in [22],

(5.3.4) vwr,c1,c2(S) = χ

((
NK

L

)C˚

, νN |
(NKL )

C˚

)
= (´1)vdχ(M (1)),

which is the signed Euler characteristic of M (1). If the projective surface
satisfies KS ď 0, then the only C˚-fixed Higgs pairs have φ = 0, and

VWr,c1,c2(S) = vwr,c1,c2(S) = (´1)vdχ(M (1)).

In [49], [42], the same result is proved for the counting invariants of
semistable Higgs pairs. We prove a blow-up formula for the Vafa-Witten
invariants in this case, and the blow-up formula is really coming from the
blow-up formula for Donaldson-Thomas type invariants for the projective
surface S as proved in [40], [34].

(2) The second type of fixed locus M (2) corresponds to the case that in the
Higgs pair the Higgs field φ ‰ 0. In this case, as proved in [48], [25], M (2)

is isomorphic to the union of nested Hilbert schemes.
It is interesting to see how the Vafa-Witten invariants contributed from

this component are related to the Eisenstein series of the Higgs pairs on
the curve X.
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5.3.3. Eisenetein series for D = P1. In this section we let S be a smooth projective
surface, and D = P1 Ă S such that the self-intersection number D2

S = ´d. The
formal completion pSD = lim

ÝÑn(S/In
D) of S along D is the one along the ideal sheaf

ID of D inside S. It is isomorphic to the formal completion of the normal bundle
ND/S = OD(´d) along D. For such a formal scheme, the formal moduli space
xM H

R (pSD; D) of stable torsion free coherent sheaves pE on pSD such that

pE|S0 – pE0

is isomorphic to the formal completion of the moduli space M H(S) along
M H(S; D), the relative moduli scheme as in [34, §2.2.1]. The Hilbert polynomial
H is determined by topological data

(r, n, a)

and we have the generating series

E(q) = E
pSD ,pE0(q) =

ÿ

n,a
χ( xM n

R (
pSD ;D))qn

where xM n,a
R ( pSD ;D) is the formal moduli space of stable relative sheaves on pSX

with topological data (r, n, a) and

pE|
pS0

D
– pE0.

The formal moduli scheme xM n,a
R ( pSD ;D) is isomorphic to the formal completion

pΓn,a(Q) over Spf(R) as in [34, Theorem 6.1.1]. In the case D = P1, [34, §7]
calculated the Eisenstein series E(q). Note that in [34, §7], the author did the
calculation for any reductive group G, and the motivic Eisenstein series. We only
need the Euler characteristic version in this paper, and leave the motivic version of
the Eisenstein series for the future research on the motivic Vafa-Witten invariants.

Proposition 5.11. ([34, Theorem 7.4.6]) In the case that D = P1, and D2
S = ´1, we

have

E
pSD ,pE0(q) = Efor(q) =

ÿ

aPZ

q´
a2
2 .

Let P P S be a point and σ : rS Ñ S be the blow-up of S along the point P. Let
D := π´1(P) be the exceptional divisor. Let H be an ample divisor on S and M H

S,n
the moduli space of H-stable coherent sheaves on S with c2(E) = n. Consider the
divisor

Hi = i ¨ σ˚H ´ aX

on rS for a = 0, 1. For i ąą 0, Hi is ample and denote by M H8(rS, n) the
corresponding moduli space of stable coherent sheaves. Then Qin-Li [40] proved
a blow-up formula:

Proposition 5.12.

(5.3.5)
ÿ

n
χ(M H8(rS, n))qn =

E
pSD ,pE0(q)(

ś

mě0(1´ q)m
)2 ¨

ÿ

n
χ(M H(S, n))qn.
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Proof. The case that the moduli space only contains stable vector bundles is
calculated in [34, Theorem 7.4.6].

To get the general formula of Qin-Li [40], we first analyze the moduli space
xM c

R(
pSD ;D). Let F be a stable torsion free sheaf on xM c

R(
pSD ;D). Since the formal

scheme xM c
R(

pSD ;D) is a formal completion of the relative moduli space M c(S; D),
we can take F as a relative sheaf on S such that F|S0 is trivial. Look at the exact
sequence

0 Ñ F|D Ñ F Ñ F/F|D Ñ 0,
where the torsion sheaf F|D is supported on D, which is a rank two vector bundle
on D. The quotient F/F|D is a rank two coherent sheaf with topological invariants
c0 Hence this will be an ideal sheaf of points on ND/S of length n = c2(F). So the
Euler characteristic of the moduli space M c(S; D) is the same as the product of
the Euler characteristic of xM c

R(
pSD ;D) with the Euler characteristic of the Hilbert

scheme of points on ND/S. Hence
ÿ

n
χ(M c(S; D))qn =

Efor(q, q1, q2)(
ś

mě0(1´ q)m
)2

Since
ÿ

n
χ(M H8(rS, n))qn =

ÿ

n
χ(M c(S; D))qn ¨

ÿ

n
χ(M H(S, n))qn,

we are done. �

We have a similar blow-up formula for the Vafa-Witten invariants:

Theorem 5.13. Let σ : rS Ñ S be the blow-up of the surface S along a point P P S. Let

vwrS
rc1,rc2

= χ(NK
L (rS), νNKL

)

vwS
c1,c2

= χ(NK
L (S), νNKL

)

be the small Vafa-Witten invariants of rS, S respectively with topological data rc1, c1, rc2 =
c2. Then we have:

ÿ

n
vwrS

rc1,n qn = E
pSD ,pE0(q) ¨

ÿ

n
vwS

c1,n qn.

Proof. Since both rS and S satisfy K
rS, KS ď 0, the Vafa-Witten invariants satisfy

vwrS
rc1,n = (´1)vd

rS
¨ χ(M H8

rc1,n (
rS))

and
vwS

c1,n = (´1)vdS
¨ χ(M H

c1,n(S)),

where vd
rS, vdS are the virtual dimension of the moduli spaces M H8

rc1,n (
rS)) and

M H
c1,n(S) respectively.
Let us calculate the virtual dimensions:

vd
rS = 2rrc2 ´ (r´ 1)rc2

1 ´ (r2 ´ 1)χ(O
rS)

vdS = 2rc2 ´ (r´ 1)c2
1 ´ (r2 ´ 1)χ(OS).

We calculate
χ(O

rS) =
1

12
(K2

rS
+ χtop(rS))
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χ(OS) =
1

12
(K2

S + χtop(S))

and
rc2 = c2 = n; rc1 = σ˚c1 ´ aD

for a = 0 or 1. Also we have
K
rS = σ˚KS + D,

and
K2
rS
= K2

S ´ 1; χtop(S) + 1 = χtop(rS).

Then we calculate:

vd
rS
´vdS =

1
12

(r2 ´ 1)(K2
S + χtop(S)´ K2

S + 1´ χtop(S)´ 1) = 0.

So let

A := ´(r´ 1)c2
1 ´ (r2 ´ 1)χ(OS) = ´(r´ 1)rc2

1 ´ (r2 ´ 1)χ(O
rS),

we have:
ÿ

n
vwrS

rc1,n qn =
ÿ

n
(´1)A ¨ χ(M

rS
rc1,n)q

n

= (´1)A ¨
ÿ

n
χ(M

rS
rc1,n)q

n

= (´1)A ¨
E
pSD ,pE0(q)(

ś

mě0(1´ q)m
)2 ¨

ÿ

n
χ(M S

c1,n)q
n

=
E
pSD ,pE0(q)(

ś

mě0(1´ q)m
)2 ¨

ÿ

n
vwS

c1,n qn.

�

Remark 5.14. (1) In the cases that K
rS, KS ď 0, the Vafa-Witten invariants

VWrS
rc1,n = vwrS

rc1,n

and
VWS

c1,n = vwS
c1,n .

Hence we also get the blow-up formula for the Vafa-Witten invariants in [48].
(2) It is more interesting to calculate the Vafa-Witten invariants coming from the type

two fixed locus M (2) of NK
L under the C˚-action, which is called the monopole

branch of the Vafa-Witten invariants. A blow-up formula for such invariants is
more interesting and it is hoped that this is related to the generalized Higgs pairs
on curves.

In [15], Göttsche and Kool made a conjecture for the monopole branch in NK
L

by the S-duality modular transformation τ Ñ ´τ´1. It is interesting to see what
properties this implies the geometric Eisenstein series.
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