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ABSTRACT. We study the equivariant sheaf counting theory on K3 surfaces with finite group actions. Let
S = [S/G] be a global quotient stack, where S is a K3 surface and G is a finite group acting as symplectic
homomorphisms on S. We show that the Joyce invariants counting Gieseker semistable sheaves on S
are independent on the Bridgeland stability conditions. As an application we prove the multiple cover
formula of Y. Toda for the counting invariants for semistable sheaves on local K3 surfaces with symplectic
finite group actions.
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1. INTRODUCTION

Let S be a smooth projective surface over C and X = SˆC the local K3 surface. The sheaf counting
theory of S and X, such as Donaldson-Thomas invariants and Pandharipande-Thomas invariants, has
rich geometric structures. In [25], [26], Y. Yoda studied the Joyce counting invariants of semistable
objects in the derived category defined by Bridgeland stability conditions. Especially in [25], Toda
proved that the Joyce invariants are independent to the stability conditions, and he used this result to
study the Pandharipande-Thomas stable pair invariants of local K3 surfaces in [26]. A multiple cover
formula for the Joyce invariants for X was conjectured in [26], and proved in [19] using both the
Gromov-Witten theory of local K3 surfaces and the Pandharipande-Thomas stable pair theory. The
multiple cover formula is essential to the calculation of the generating series of the SU(r)-Vafa-Witten
invariants for K3 surfaces in [24].

The multiple cover formula of Toda was generalized and proved to be true for étale K3 gerbes in
[16], which is essential to calculate the SU(r)/Zr-Vafa-Witten invariants for K3 surfaces in [17]. Both
the generating series of the SU(r)-Vafa-Witten invariants and SU(r)/Zr-Vafa-Witten invariants for
K3 surfaces are the two sides inspired by the S-duality conjecture in [27]. The S-duality conjecture of
Vafa-Witten for K3 surfaces was proved in prime rank by [13], [15], and all ranks in [17].

In this paper we study the sheaf counting theory for local orbifold K3 surfaces, and prove a
multiple cover formula for the Joyce invariants counting semistable sheaves on local orbifold K3
surfaces. The formula is essential to calculating the generating function of the SU(r)/Zr-Vafa-Witten
invariants for orbifold K3 surfaces in [14].

1.1. Sheaf counting on [S/G]. Let S be a smooth projective K3 surface and G a finite group acting
on S as symplectic morphisms. We consider the surface Deligne-Mumford stack S = [S/G]. The
action of G on S only has isolated fixed points, and the classification of the number of fixed points
corresponding to different finite group actions are given in [9, Chapter 15]. Thus all the stacky locus
of S = [S/G] are stacky points, and they are given by ADE type singularities on the coarse moduli
space S = S/G. Let σ : Y Ñ S/G be the minimal resolution. It is a crepant resolution and the
exceptional curves over a singular point in S/G are given by ADE type Dynkin diagrams.

Let Coh(S) be the abelian category of coherent sheaves on S , which is by definition the category
of G-equivariant sheaves on S. We fix an ample divisor ω on S . Similar to the K3 surface, we define
the orbifold Mukai vector vorb(E) for any object E P Coh(S) as:

vorb(E) := ĂCh(E) ¨
b

rtdS = (ĂCh0(E), ĂCh1(E), ĂCh0(E) + ĂCh2(E)) P H˚CR(S)

where ĂCh is the orbifold Chern character and rtd is the orbifold Todd class. Here H˚CR(S) is the Chen-
Ruan cohomology of S . Let ΓG

0 be the group of all the orbifold Mukai vectors.
We take M(Coh(S)) to be the moduli stack of coherent sheaves on S , which is an algebraic stack

locally of finite type over C. We work on the moduli stack Mω(vorb) of ω-Gieseker semistable sheaves
E P Coh(S) with vorb(E) = vorb P ΓG

0 . In general, one takes a generating sheaf Ξ on S = [S/G] as
in [20] and define the moduli stack of semistable sheaves on S = [S/G] using the modified Gieseker
stability defined by Ξ. Since S = [S/G] only has isolated stacky points, the modified Gieseker
stability is equivalent to the ω-Gieseker stability.

There is a Hall algebra structure on Coh(S) and we denote it by H(Coh(S)), see §2.4. Thus we
have an element

δω,S := [Mω(vorb) ãÑM(Coh(S))] P H(Coh(S))
We take its logarithm as:

(1.1.1) εω,S (vorb) :=
ÿ

`ě1,v1+¨¨¨+v`=vorb,viPΓG
0

χω,vi
(m)=χω,vorb

(m)

(´1)`´1

`
δω,S (v1) ‹ ¨ ¨ ¨ ‹ δω,S (v`)

where χω,vorb
(m) is the reduced Hilbert polynomial.
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Let
C(S) := Im(vorb : Coh(S)Ñ ΓG

0 ).
Then the Joyce invariants are defined as follows. If vorb P C(S), we define

(1.1.2) Jω(vorb) = lim
q

1
2Ñ1

(q´ 1)Pq(εω,S (vorb))

where Pq(´) is the Poincaré polynomial of the stack. The Joyce invariants are independent to the
polarization ω.

Generalizing the construction in [3], there exist Bridgeland stability conditions σ = (Z ,A) on the
bounded derived category Db(Coh(S)) of coherent sheaves on S . Here Bridgeland stability condition
σ = (Z ,A) is a pair, where A is the heart of a bounded t-structure on Db(Coh(S)), and Z : K(A)Ñ C

is the central charge satisfying certain conditions, see §2.6 for more details. We define Mσ(vorb) to
be the moduli stack of σ-semistable objects E P A with vorb(E) = vorb. The heart A is an abelian
category. Let H(A) be the Hall algebra of A. Then similar to (1.1.1), we replace the moduli stack
there by the moduli stack of σ-semistable objects in A and define the Joyce invariants Jσ(vorb) in the
same way. Our first main result is:

Theorem 1.1. (Theorem 2.8) The Joyce invariant Jσ(vorb) is independent to the stability conditions. Moreover

Jσ(vorb) = Jω(vorb).

We prove Theorem 1.1 in the remaining subsections in §2.

1.2. Multiple cover formula. We generalize the above counting invariants to the local orbifold K3
surfaces. Let X := S ˆC be the local orbifold K3 surface, which is a Calabi-Yau threefold Deligne-
Mumford stack. Let π : X Ñ C be the projection and let Cohπ(X) Ă Coh(X) be the subcategory
of coherent sheaves supported on the fibers of π. Let M(Cohπ(X)) be the moduli stack of objects
in Cohπ(X), which is an algebraic stack locally of finite type. Still fix the polarization ω, and let
Mω,X(vorb) be the moduli stack of ω-Gieseker semistable sheaves E P Cohπ(X) with vorb(E) =
vorb P ΓG

0 . Let H(Cohπ(X)) be the Hall algebra. We have

δω,X := [Mω,X(vorb) ãÑM(Cohπ(X))] P H(Cohπ(X))

Its logarithm is:

(1.2.1) εω,X(vorb) :=
ÿ

`ě1,v1+¨¨¨+v`=vorb,viPΓG
0

χω,vi
(m)=χω,vorb

(m)

(´1)`´1

`
δω,X(v1) ‹ ¨ ¨ ¨ ‹ δω,X(v`)

The Joyce invariants counting semistable coherent sheaves in Cohπ(X) are given by

Jω
X(vorb) = lim

q
1
2Ñ1

(q´ 1)Pq(εω,X(vorb)) P Q.

Our second result is the multiple cover formula of such invariants:

Theorem 1.2. (Theorem 3.7) We have a multiple cover formula for JX(vorb):

JX(vorb) =
ÿ

k|vorb,kě1

1
k2 χ(Hilbn,m(S))

where the data n,m are determined by 1
k vorb = (r, (β,m), n), and Hilbn,m(S) is the Hilbert scheme of the

orbifold K3 surface S with data (n,m).

We prove Theorem 1.2 by working on the sheaf counting invariants on the compactification X =
S ˆ P1 and Z = Y ˆ P1. For the crepant resolution Y Ñ S/G. From [5] There exists a derived
equivalence

Φ : D(Coh(S)) „
ÝÑ D(Coh(Y)).
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The equivalence induces the following equivalence:

Φ : D(Cohπ(X))
„
ÝÑ D(Cohπ(Z))

where Cohπ(X) Ă Coh(X) (rep. Cohπ(Z) Ă Coh(Z)) is the subcategory of coherent sheaves on
X (rep. Z) supported on the fibers under π : X Ñ P1 (rep. π : Z Ñ P1). Then we define the
Joyce invariants JX(vorb) (rep. JZ(vY)) on the categories above. The invariants satisfy the relation
JX(vorb) = 2JX(vorb). We prove the automorphic property for the invariants JX(vorb), and show that
it is the same as JZ(vY) under the isomorphism Φ˚ : H˚CR(S) Ñ H˚(Y) such that Φ˚(vorb) = vY.
The multiple cover formula for the invariants JZ(vY) in [26], [19], plus the properties of the Hilbert
scheme Hilb(S) of zero dimensional substacks in S (see [6]) implies the formula in Theorem 1.2.

1.3. Outline. Here is the short outline of the paper. We study the sheaf counting invariants on
the orbifold K3 surface [S/G] in §2, where we prove Theorem 1.1. The Joyce invariants counting
semistable sheaves on the local orbifold K3 surfaces are defined in §3, and we prove Theorem 1.2.

1.4. Convention. We work over complex number C throughout of the paper. We use Roman letter
E to represent a coherent sheaf on a projective DM stack S , and use curly letter E to represent the
sheaves on the total space Tot(L) of a line bundle L over S. We reserve rk for the rank of the torsion
free coherent sheaves E.

Acknowledgments. Y. J. would like to thank Amin Gholampour, Martijn Kool, and Richard Thomas
for valuable discussions on the Vafa-Witten invariants. Y. J. is partially supported by Simons
foundation collaboration grant. H. M. S. is partially supported by National Natural Science
Foundation of China (Grant No. 11771294, 11301201).

2. THE JOYCE INVARIANTS FOR QUOTIENT K3 SURFACES

2.1. Symplectic action on K3 surfaces. Let S be a smooth projective K3 surface, and G a finite
group which acts on S as symplectic morphisms. We consider the surface Deligne-Mumford stack
S := [S/G]. From [9, Chapter 15], the action only has isolated fixed points which are all ADE type
singularities on the coarse moduli space S = S/G. For instance, when G = µ2, there are totally 8
isolated A1-type singularities, and this is called the Nikulin involution. More basic properties of the
symplectic action on the K3 surface S can be found in [9, Chapter 15].

2.2. Mukai lattice. For the K3 surface S with H1(S,OS) = 0, the Mukai lattice is define by:

rH(S, Z) := H0(S, Z)‘ H2(S, Z)‘ H4(S, Z)

and for vi = (ri, βi, ni) P rH(S, Z) (i = 1, 2), the Mukai paring is defined as:

(2.2.1) xv1, v2y = β1β2 ´ r1n2 ´ r2n1.

There is a weight two Hodge structure on rH(S, Z)bC, which is given by:
$

’

&

’

%

rH2,0(S) := H2,0(S);
rH1,1(S) := H0,0(S)‘ H1,1(S)‘ H2,2(S);
rH0,2(S) := H0,2(S).

Define:
Γ0 := rH(S, Z)X rH1,1(S) = Z‘ NS(S)‘Z.

The Mukai vector v(E) P Γ0 for any E P Db(Coh(S)) is defined by

v(E) := Ch(E)
a

tdS = (Ch0(E), Ch1(E), Ch0(E) + Ch2(E)).

Riemann-Roch theorem tells us that

χ(E, F) = ´xv(E), v(F)y.
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2.3. Orbifold Mukai vector. Let S = [S/G] be the surface Deligne-Mumford stack given by the
symplectic action of G on S. We consider the Chen-Ruan cohomology

H˚CR(S , Q) =
à

iPIS

H˚´2 age(Si)(Si, Q)

where the inertia stack IS =
Ů

iPIS Si is the decomposition of the inertia stack of S and IS is the
finite index set. We let S0 := S corresponding to the non-twisted sector. All of the other components
Si for i ‰ 0 are isolated stacky point BGSi where GSi Ă SU(2) is a finite subgroup of SU(2) which
corresponds to the centralizer of the conjugacy class (g) in the local isotropy group of the stacky
point. The component Si always have age 1. We let I1S Ă IS be the components in the inertia stack
containing all twisted sectors (which are all stacky ADE type points).

We define a similar weight two Hodge structure on

rHCR(S) = H0
CR(S)‘ H2

CR(S)‘ H4
CR(S)

which is given by:
$

’

&

’

%

rH2,0
CR(S) := H2,0(S);

rH1,1
CR(S) := H0,0(S)‘ H1,1(S)‘ H0(I1S)‘ H2,2(S);

rH0,2
CR(S) := H0,2(S).

We define

ΓG
0 := rHCR(S)X rH1,1

CR(S) = Q‘ H1,1(S)‘Q|I1S| ‘Q = Q‘ NS(S)‘Q|I1S| ‘Q

where |I1S | is the number of components in I1S . We define the orbifold Mukai vector vorb(E) for any
E P Db(Coh(S)) as

vorb(E) := ĂCh(E) ¨
b

rtdS = (ĂCh0(E), ĂCh1(E), ĂCh0(E) + ĂCh2(E))

where ĂCh : K(Coh(S)) Ñ H˚CR(S) is the orbifold Chern character. The orbifold Riemann-Roch
theorem (for instance [7]) says that

χ(E, F) = ´xvorb(E), vorb(F)y

for E, F P Db(Coh(S)).

2.4. Hall algebra. We talk about the counting sheaf invariants on the derived category Db(Coh(S))
of coherent sheaves on S . It is well known that Db(Coh(S)) is the same as the derived category of G-
equivariant sheaves on the K3 surface S. Let us denote by M(Coh(S)) the moduli stack of coherent
sheaves on S = [S/G]. The stack M(Coh(S)) is an algebraic stack locally of finite type over C. We
fix a ample divisor ω on S = S/G. Let vorb P ΓG

0 and

Mω,S (vorb) ĂM(Coh(S))
the substack of ω-Gieseker semistable sheaves E P Coh(S) satisfying vorb(E) = vorb.

Let H(Coh(S)) be the Q-vector space spanned by the isomorphism classes of symbols:

[X f
ÑM(Coh(S))]

where X is an algebraic stack of finite type over C with affine stabilizers and f is a morphism of
stacks. The relations are given by:

(2.4.1) [X f
ÑM(Coh(S))]´ [Y f |Y

Ñ M(Coh(S))]´ [U f |U
Ñ M(Coh(S))]

where Y Ă X is a closed substack and U = X zY . There is a Hall algebra structure on H(Coh(S))
given by the Hall algebra product ‹

(2.4.2) [X f
ÑM(Coh(S))] ‹ [Y g

ÑM(Coh(S))] = [Z p2˝h
Ñ M(Coh(S))]
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where Z and h fit into the Cartisian diagram:

Z h //

��

Ext(Coh(S))
p2 //

(p1,p2)

��

M(Coh(S))

X ˆY
fˆg //M(Coh(S))ˆM(Coh(S))

where Ext(Coh(S)) is the stack of short exact sequences in Coh(S) and

pi : Ext(Coh(S))ÑM(Coh(S))(i = 1, 2, 3)

are morphisms of stacks sending a short exact sequence

0 Ñ E1 Ñ E2 Ñ E3 Ñ 0

to the objects Ei respectively.

2.5. Joyce invariants. Joyce [18] defined a morphism

Pq : H(Coh(S))Ñ Q(q
1
2 )

such that if H is a special algebraic group acting on a scheme Y, we have from [18, Definition 2.1]

Pq

(
[Y/H]

f
ÑM(Coh(S))

)
= Pq(Y)/Pq(H)

where Pq(Y) is the virtual Poincaré polynomial of Y.
We define an element

δω,S (vorb) := [Mω,S (vorb) ãÑM(Coh(S))] P H(Coh(S))

and its logarithm as:

(2.5.1) εω,S (vorb) :=
ÿ

`ě1,v1+¨¨¨+v`=vorb,viPΓG
0

χω,vi
(m)=χω,vorb

(m)

(´1)`´1

`
δω,S (v1) ‹ ¨ ¨ ¨ ‹ δω,S (v`)

where χω,vorb
(m) is the reduced Hilbert polynomial, i.e.,

χω,vorb
(m) =

χω,vorb(m)

ad
(ad is the first coefficient )

Definition 2.1. Let

C(S) := Im(vorb : Coh(S)Ñ ΓG
0 ).

Then if vorb P C(S), we define Jω(vorb) P Q as:

Jω(vorb) = lim
q

1
2Ñ1

(q´ 1)Pq(εω,S (vorb));

If ´vorb P C(S), we define Jω(vorb) = Jω(´vorb) and if ˘vorb R C(S), then Jω(vorb) = 0.

[18, Theorem 6.2] guarantees that the limit above exists.
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2.6. Bridgeland stability conditions. We will construct the Bridgeland stability conditions on
Db(Coh(S)).

Definition 2.2. A Bridgeland stability condition on Db(Coh(S)) is a pair σ = (Z,A) consisting of the
heart of a bounded t-structure A Ă Db(Coh(S)) and a group homomorphism map (called central charge)
Z : K(A)Ñ C such that the following are satisfied:

(1) Z satisfies the following positivity property for any 0 ‰ E P A:

Z(E) P treiπφ : r ą 0, 0 ă φ ď 1u.

(2) Every object of A has a Harder-Narasimhan filtration in A with respect to νσ-stability, here the slope
νσ of an object E P A is defined by

νσ(E) =

$

’

&

’

%

+8, if Im Z(E) = 0,

´
Re Z(E)
Im Z(E) , otherwise.

(3) σ satisfies the support property: Z factors as K(A)
v
ÝÑ Λ

g
ÝÑ C where Λ is a finitely generated free

abelian group, and there exists a quadratic form Q on ΛR such that Q|ker(g) is negative definite and
Q(v(E)) ě 0 for any νσ-semistable object E P A.

We say E P A is νσ-(semi)stable if for any non-zero subobject F Ă E in A, we have

νσ(F) ă (ď)νσ(E/F).

The Harder-Narasimhan filtration of an object E P A is a chain of subobjects

0 = E0 Ă E1 Ă ¨ ¨ ¨ Ă Em = E

in A such that Gi := Ei/Ei´1 is νσ-semistable and νσ(G1) ą ¨ ¨ ¨ ą νσ(Gm). We set ν+σ (E) := νσ(G1)
and ν´σ (E) := νσ(Gm).

We now give a construction of Bridgeland stability conditions on S = [S/G]. For a fixed Q-divisor
D on S , we define the twisted Chern character ChD(E) = e´D Ch(E) for any E P Db(S). More
explicitly, we have

ChD
0 = Ch0 = rank ChD

2 = Ch2´D Ch1 +
D2

2 Ch0

ChD
1 = Ch1´D Ch0 ChD

3 = Ch3´D Ch2 +
D
2 Ch1´

D3

6 Ch0 .

Let ω be an ample divisor on S . We define the twisted slope µω,D of a coherent sheaf E P Coh(S)
by

µω,D(E) =

$

’

&

’

%

+8, if ChD
0 (E) = 0,

ω ChD
1 (E)

ω2 ChD
0 (E)

, otherwise.

There exists Harder-Narasimhan filtration

0 = E0 Ă E1 Ă ¨ ¨ ¨ Ă En = E

such that Ei/Ei´1 is µω,D-semistable and µω,D(E1/E0) ą ¨ ¨ ¨ ą µω,D(En/En´1). We let µ+
ω,D(E) :=

µω,D(E1/E0) and µ´ω,D(E) := µω,D(En/En´1). We define

Fω,D := tE P Coh(S)|µ+
ω,D(E) ď 0u(2.6.1)

Tω,D := tE P Coh(S)|µ´ω,D(E) ą 0u
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We let Aω,D Ă Db(S) be the extension-closure xFω,D[1], Tω,Dy. By the general theory of torsion pairs
and tilting [8], Aω,D is the heart of a bounded t-structure on Db(S); in particular, it is an abelian
category. Let k ą 0 be a positive rational number, and consider the following central charge

Zk,D(E) = ´ChD
2 (E) +

k2

2
ω2 ChD

0 (E) + iω ChD
1 (E),

where E P Aω,D.

Theorem 2.3. For any (k, D) P Qą0 ˆNS(S)Q, σk,D = (Zk,D,Aω,D) is a Bridgeland stability condition on
S .

PROOF. By the following Hodge index theorem and Bogomolov’s inequality on S , one sees that

∆D
ω(E) := (ω ChD

1 (E))2 ´ 2ω2 ChD
0 (E)ChD

2 (E) ě 0

for any µω,D-semistable sheaf. Therefore the required assertion is proved in [3], [1] and [2, Appendix
2]. See also [21, Corollary 2.22]. l

Theorem 2.4 (Hodge index theorem). Let L be a divisor on S , then we have

L2ω2 ď (Lω)2.

Theorem 2.5 (Bogomolov’s inequality). Let E be a torsion free µω,D-semistable sheaf on S . Then we have

∆(E) := (ChD
1 (E))2 ´ 2 ChD

0 (E)ChD
2 (E) ě 0.

Proof. See [15]. �

The stability condition σk,D above is usually called tilt-stability or νk,D-stability, where the νk,D-
slope of an object E P Aω,D is defined by

νk,D(E) =

$

’

’

&

’

’

%

+8, if ω ChD
1 (E) = 0,

ChD
2 (E)´ k2

2 ω2 ChD
0 (E)

ω ChD
1 (E)

, otherwise.

The νk,D-semistable objects still satisfy Bogomolov’s inequality:

Theorem 2.6. Let E be a νk,D-semistable object in Aω,D. Then we have

∆D
ω(E) := (ω ChD

1 (E))2 ´ 2ω2 ChD
0 (E)ChD

2 (E) ě 0.

Proof. The proof is the same as that of [2, Theorem 3.5]. �

2.7. The moduli stack. For the Bridgeland stability condition σ = (Z ,Aω), let Mvorb(σ) be the
moduli stack of σ-semistable objects E P D(Coh(S)) with vorb(E) = vorb. If G = 1, Toda in [26],
[25, §3] proved that the stack Mvorb(σ) is an Artin stack of finite type over C. When G is nontrivial,
the sheaves inside the moduli stack Mvorb(σ) of G-equivariant sheaves must be G-invariant. Let
MG be the moduli stack of G-fixed stable objects in the heart Aω. Let Mvorb(σ)G Ă MG be the
corresponding G-fixed objects in Mvorb(σ) (i.e., forgetting about the G-equivariant structure). Then

Mvorb(σ)ÑMvorb(σ)G

is a fibration with fiber the G-equivariant structures for a G-fixed sheaf. The fixed part Mvorb(σ)G is
a closed substack of the moduli stack of semistable objects in S which is finite type over C. Therefore
the moduli stack Mvorb(σ) is also an Artin stack of finite type over C.
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2.8. Joyce invariants Jσ(vorb). Generalizing the construction in §2.4, and §2.5, let H(Aω) be the Hall
algebra of objects in the heart Aω, which is an abelian category.

Still let M(Aω) be the moduli stack of objects in the abelian category Aω, which is an algebraic
stack locally of finite type over C. For the moduli stack Mvorb(σ) corresponding to σ = (Z ,Aω), we
have an elment

δσ(vorb) := [Mvorb(σ) ãÑM(Aω)] P H(Aω)

Its logarithm is given by:

(2.8.1) εσ(vorb) :=
ÿ

`ě1,v1+¨¨¨+v`=vorb,viPΓG
0

argZ(vi)=argZ(vorb)

(´1)`´1

`
δσ(v1) ‹ ¨ ¨ ¨ ‹ δσ(v`)

Then consider Pq : H(Aω)Ñ Q(q
1
2 ) and we define

Definition 2.7.
Jσ(vorb) := lim

q
1
2Ñ1

(q´ 1)εσ(vorb) P Q.

Our main result is:

Theorem 2.8. The Joyce invariant Jσ(vorb) is independent to the stability conditions. Moreover

Jσ(vorb) = Jω(vorb).

2.9. Gieseker stability and νk,D-stability. We will recall the relations between the Gieseker stability
and νk,D-stability.

We define the twisted Hilbert polynomial of a sheaf E on S as:

Gω,D(E, m) =
m2

2
ω2 + mω

ChD
1 (E)

rk(E)
+

ChD
2 (E)

rk(E)
+ χ(OS )

Definition 2.9. We say E is (ω, D)-twisted Gieseker (semi)stable (or Gω,D (semi)stable) if for all proper
subsheaves F ãÑ E, we have Gω,D(F, m) ă (ď)Gω,D(E, m) for m ąą 0.

We can write just Gω,D(E, m) and νk,D(E) in the following form:

Gω,D(E, m) =
m2

2
ω2 +

ω ChD
1 (E)

rk(E)
m +

ChD
2 (E)

rk(E)
+ χ(OS )(2.9.1)

=
m2

2
ω2 + ω2µω,D(E)m +

ChD
2 (E)

rk(E)
+ χ(OS )

and

νk,D(E, m) =
´ k2

2 ω2 ChD
0 (E)

ω ChD
1 (E)

+
ChD

2 (E)
ω ChD

1 (E)
(2.9.2)

= ´
1

µω,D(E)
¨

k2

2
+

ChD
2 (E)

ω ChD
1 (E)

.

We give the orbifold analogue of Proposition 6.4 and Proposition 6.5 in [25]. We follow the strategy
in [22] given by the third author.

Proposition 2.10. For any object E P Coh(S)XAω,D, there exists a constant N only depending on E such
that E is Gω,D-semistable if E is νk,D-semistable for some k ě N.

Proof. We assume that E is νk,D-semistable for some k ą 0 but not Gω,D-semistable. Then one can take
a subsheaf F Ă E such that E/F is Gω,D-semistable and Gω,D(F, m) ą Gω,D(E, m) for m " 0. Hence
by the definition of Gω,D and Aω,D, we obtain two cases:

(1) µω,D(F) ą µω,D(E) ą 0 and µω,D(E/F) ą 0;
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(2) µω,D(F) = µω,D(E) ą 0, µω,D(E/F) ą 0 and ChD
2 (E)

rk E ă
ChD

2 (F)
rk F .

It is obvious that Case (2) contradicts the νk,D-semistability of E. Thus one gets µω,D(E) ă µω,D(F).
This implies that ω Ch1(E) rk F ă ω Ch1(F) rk E. Hence one sees that

ω ChD
1 (F) rk E´ω ChD

1 (E) rk F = ω Ch1(F) rk E´ω Ch1(E) rk F ě 1;

ω2 rk E
ω ChD

1 (E)
´

ω2 rk F
ω ChD

1 (F)
ě

ω2

ω ChD
1 (E) ¨ω ChD

1 (F)

=
1

ω ChD
1 (E) ¨ µω,D(F) rk F

ě
1

ω ChD
1 (E) ¨ µ+

ω,D(E) rk E
.(2.9.3)

From the νk,D-semistability of E, it follows that

ChD
2 (E)´ k2

2 ω2 ChD
0 (E)

ω ChD
1 (E)

ě
ChD

2 (F)´ k2

2 ω2 ChD
0 (F)

ω ChD
1 (F)

.

Combining this and (2.9.3), one deduces

´
k2/2

ω ChD
1 (E) ¨ µ+

ω,D(E) rk E
ě ´

k2

2

(
ω2 rk E

ω ChD
1 (E)

´
ω2 rk F

ω ChD
1 (F)

)

ě
ChD

2 (F)
ω ChD

1 (F)
´

ChD
2 (E)

ω ChD
1 (E)

ě
ChD

2 (F)
ω2 rk F ¨ µ+

ω,D(E)
´

ChD
2 (E)

ω ChD
1 (E)

ą
ChD

2 (F)
ω2 rk E ¨ µ+

ω,D(E)
´

ChD
2 (E)

ω ChD
1 (E)

.(2.9.4)

On the other hand, since E/F is Gω,D-semistable, Bogomolov’s inequality gives

ChD
2 (F) = ChD

2 (E)´ChD
2 (E/F)

ě ChD
2 (E)´

(ω ChD
1 (E/F))2

2ω2 rk(E/F)

ě ChD
2 (E)´

(ω ChD
1 (E)´ω ChD

1 (F))2

2ω2

ą ChD
2 (E)´

(ω ChD
1 (E))2

2ω2

From this and (2.9.4), one infers that

´
k2/2

ω ChD
1 (E) ¨ µ+

ω,D(E) rk E
ą

ChD
2 (E)

ω2 rk E ¨ µ+
ω,D(E)

´
(ω ChD

1 (E))2

2(ω2)2 rk E ¨ µ+
ω,D(E)

´
ChD

2 (E)
ω ChD

1 (E)
.

This implies

k2 ă
(ω ChD

1 (E))3

(ω2)2 + 2 rk E
(

µ+
ω,D(E)´ µω,D(E)

)
ChD

2 (E).

Therefore, one completes the proof by taking

N =

d

(ω ChD
1 (E))3

(ω2)2 + 2 rk E
(

µ+
ω,D(E)´ µω,D(E)

)
ChD

2 (E).

�
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Proposition 2.11. For any object E P Coh(S)XAω,D, there exists a constant N only depending on E such
that E is νk,D-semistable for any k ě N if E is Gω,D-semistable.

Proof. The proof is a mimic of that of [22, Theorem 1.3]. We assume that E is not νk,D-semistable for
some k ą 0 but Gω,D-semistable. Let F be the νk,D-maximal subobject of E in Aω,D. By [22, Lemma
4.1], one sees that rk F ď rk E if

k ě N0 :=

g

f

f

emax

#

∆D
ω(E)

ω2 rk E
´

µ2
ω,D(E) rk E
ω2 + rk E

, 0

+

.

Hence F is a subsheaf of E when k ě N0. The Gω,D-semistability of E gives two cases:
(1) µω,D(E) ą µω,D(F) ą 0;

(2) µω,D(E) = µω,D(F) ą 0 and ChD
2 (E)

rk E ě
ChD

2 (F)
rk F .

It is obvious that Case (2) contradicts that E is not νk,D-semistable. In Case (1), one obtains
ω Ch1(E) rk F ą ω Ch1(F) rk E. Hence one sees that

ω ChD
1 (E) rk F´ω ChD

1 (F) rk E = ω Ch1(E) rk F´ω Ch1(F) rk E ě 1.

It implies that

ω2 rk F
ω ChD

1 (F)
´

ω2 rk E
ω ChD

1 (E)
ě

ω2

ω ChD
1 (E) ¨ω ChD

1 (F)

=
1

ω ChD
1 (E) ¨ µω,D(F) rk F

ą
1

ω ChD
1 (E) ¨ µω,D(E) rk E

.(2.9.5)

Since E is not νk,D-semistable, we have

ChD
2 (E)´ k2

2 ω2 ChD
0 (E)

ω ChD
1 (E)

ă
ChD

2 (F)´ k2

2 ω2 ChD
0 (F)

ω ChD
1 (F)

.

Combining this and (2.9.5), one deduces

k2/2
ω ChD

1 (E) ¨ µω,D(E) rk E
ă

k2

2

(
ω2 rk F

ω ChD
1 (F)

´
ω2 rk E

ω ChD
1 (E)

)

ă
ChD

2 (F)
ω ChD

1 (F)
´

ChD
2 (E)

ω ChD
1 (E)

.(2.9.6)

On the other hand, since F is νk,D-semistable, Bogomolov’s inequality gives

ChD
2 (F)

ω ChD
1 (F)

ď
ω ChD

1 (F)
2ω2 rk F

ă
1
2

µω,D(E)

From this and (2.9.6), one obtains

k2 ă ω ChD
1 (E)µω,D(E) rk E

(
µω,D(E)´

2 ChD
2 (E)

ω ChD
1 (E)

)
= µ3

ω,D(E)ω2(rk E)2 ´ 2µω,D(E)(rk E)ChD
2 (E).

We finish the proof by taking

N = max
"

b

µ3
ω,D(E)ω2(rk E)2 ´ 2µω,D(E)(rk E)ChD

2 (E), N0

*

.
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�

The above two propositions gives an equivalence between Gω,D-stability and νk,D-stability:

Theorem 2.12. For any E P Coh(S)XAω,D, there exists a constant N only depending on E such that E is
νk,D-semistable for k ě N if and only if E is Gω,D-semistable.

2.10. Proof of Theorem 2.8. From [25, Theorem 6.6], it is enough to compare JσkD (vorb) for σkD =
(Zk,D,AD) and Jω(vorb) for k ąą 0. From the construction of (2.5.1) and (2.8.1) before, after taking
Joyce invariants we have

Jω(vorb) =
ÿ

`ě1,v1+¨¨¨+v`=vorb

(´1)`´1

`

ź̀

i=1

Jω(vi)

and

JσkD (vorb) =
ÿ

`ě1,v1+¨¨¨+v`=vorb

(´1)`´1

`

ź̀

i=1

JσkD (vi)

From Theorem 2.12 in §2.9, we have

Mvi (σkD) –Mvi (ω).

Thus we have
ś`

i=1 Jω(vi) =
ś`

i=1 JσkD (vi).

3. SHEAVES ON LOCAL ORBIFOLD K3 SURFACES

3.1. Crepant resolutions. Recall the surface Deligne-Mumford stack S = [S/G] in §2.1, where G,
as a finite group, acts as symplectic morphisms on S. The stacky points of S consists of ADE type
orbifold points. Let

f : Y Ñ S = S/G

be the minimal resolution of S/G. It is a crepant resolution, and Y is also a smooth K3 surface. The
exceptional curves of Y over each orbifold singular point P P S/G are given by ADE type Dynkin
diagrams. More details can be found in [9]. Consider the diagram:

Z

{{ !!
[S/G]

p ##

Y

f~~
S/G

such that [S/G] 99K Y is a crepant birational morphism. This is the situation in [5], where Y is one
irreducible component in the G-Hilbert scheme G´Hilb, and Z Ă Yˆ S is the universal subscheme.
Therefore from [5, Theorem1.2], there is an equivalence

Φ : D(Coh(S)) „
ÝÑ D(Coh(Y))

between derived categories.
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Proposition 3.1. We have the following commutative diagram:

(3.1.1) D(Coh(S)) Φ //

��

D(Coh(Y))

��
K(Coh(S)) Φ //

ĂCh¨
b

rtdS
��

K(Coh(Y))

Ch ¨
?

tdY
��

H˚CR(S)
Φ˚ // H˚(Y)

such that it induces an isomorphism
Φ˚ : H˚CR(S)Ñ H˚(Y)

between the Chen-Ruan cohomology of S and the cohomology space of Y.

Proof. This is the result in [5], and known result for the cohomology of the crepant resolution and the
Chen-Ruan cohomology of the stack S = [S/G]. �

3.2. Local orbifold K3 surfaces. For the Calabi-Yau surface Deligne-Mumford stack S = [S/G], and
the K3 surface Y, we take

X := S ˆC; Z = YˆC.

Here Z is called the local K3 surface and X is called the local orbifold K3 surface. X is a smooth
Calabi-Yau threefold Deligne-Mumford stack. Their natural compactifications are given by

X = S ˆP1; Z = YˆP1.

Let
π : X = S ˆP1 Ñ P1; π : Z = YˆP1 Ñ P1

be projections. We consider the abelian subcategories

Cohπ(X) Ă Coh(X); Cohπ(Z) Ă Coh(Z)

to be the subcategories consisting of sheaves supported on the fibers of π. We denote by:

(3.2.1) DS
0 := Db(Cohπ(X)); DY

0 := Db(Cohπ(Z))

the corresponding derived categories of Cohπ(X), Cohπ(Z) respectively. We define:

Definition 3.2.
DS := xπ˚ Pic(P1), Cohπ(X)ytr Ă Db(Coh(X))

DY := xπ˚ Pic(P1), Cohπ(Z)ytr Ă Db(Coh(Z)).

3.3. Chern characters. We introduce the Chern characters on the categories in §3.2. Let

π1 : X = S ˆP1 Ñ S

be the first projection morphism.

Definition 3.3. Define the homomorphisms

(3.3.1) rcl0 : K(DS
0 )

π1˚
Ñ K(S)

ĂCh
Ñ ΓG

0

and

(3.3.2) vorb : K(DS
0 )

π1˚
Ñ K(S)

ĂCh¨
b

rtdS
ÝÑ ΓG

0
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For the triangulated category DS , we have

ΓG := H0(X)‘ (ΓG
0 b H2(P1, Q)) Ă H˚CR(X, Q)

Thus we have a group homomorphism

rcl := ĂCh : K(DS )Ñ ΓG

We can write ΓG as:

ΓG = Q‘Q‘ NS(S)‘Q|I1S| ‘Q

and vorb P ΓG is given by vorb = (R, r, rβ, n) such that (r, rβ, n) P ΓG
0 and rβ P NS(S)‘Q|I1S|.

For the K3 surface Y, and Z = YˆP1, we have similar Chern character morphisms as in [26, §2.3]:

rcl0 : K(DY
0 )

π1˚
Ñ K(Y) Ch

Ñ ΓY
0 ,

where ΓY
0 – Z‘ NS(Y)‘Z, and

(3.3.3) v : K(DY
0 )

π1˚
Ñ K(Y)

Ch ¨
?

tdY
Ñ ΓY

0

Also for DY := xπ˚ Pic(P1), Cohπ(Z)ytr, we have

cl = Ch : K(DY
0 )Ñ ΓY

0

where ΓY = Z‘ ΓY
0 .

3.4. Joyce invariants in Cohπ(X). Still let π : X = S ˆ C Ñ C be the projection. Let Cohπ(X) Ă
Cohπ(X) be the subcategory of sheaves supported on the fibers on π : XÑ C.

Let Mπ(X) be the stack of objects in Cohπ(X), and this stack is an algebraic stack locally of finite
type over C. Similarly as in §2.5, let H(Cohπ(X)) be the Hall algebra of the category Cohπ(X). Let
Mω,X(vorb) be the moduli stack of ω-Gieseker semistable sheaves E P Cohπ(X) satisfying vorb(E) =
vorb as in (3.3.2). The stack Mω,X(vorb) is an algebraic stack of finite type over C. Thus there is an
element

δω,X(vorb) := [Mω,X(vorb) ãÑMπ(X)] P H(Cohπ(X))

Its logarithm is given by:

εω,X(vorb) :=
ÿ

`ě1,v1+¨¨¨+v`=vorb,viPΓG
0

χω,vi
(m)=χω,vorb

(m)

(´1)`´1

`
δω,X(v1) ‹ ¨ ¨ ¨ ‹ δω,X(v`)

Then we can define the Joyce invariants:

Definition 3.4. Let

C(X) := Im(vorb : Cohπ(X)Ñ ΓG
0 )

We define the Joyce Invariants: If vorb P C(X),

Jω(vorb) := lim
q

1
2Ñ1

(q´ 1) ¨ Pq(εω,X(vorb))

If ´vorb P C(X), Jω(´vorb). Jω(vorb) = 0 otherwise.

Similar to the case of K3 surfaces, the Joyce invariants Jω(vorb) is independent to the polarization
ω.
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3.5. A digression on Hilbert scheme of points on S . We talk about the Hilbert scheme Hilbn(S) of
zero dimensional substacks in the Deligne-Mumford surface S . A good reference can be found in [6].
First we have

Hilb(S) – Hilb(S)G,

i.e., the Hilbert scheme of zero dimensional substacks of S is naturally identified with the G-fixed
Hilbert scheme of S. More detail explanation of the zero dimensional substacks supported on the
stacky points of S can be found in [6, §2].

The components of Hilbn(S) are given by the K-theory class of OT for T Ă S the zero dimensional
substack of S . Let P1, ¨ ¨ ¨ , Pr P S/G be the singular points where the stabilizer subgroups Gi Ă G have
orders ki and ADE type ∆(i) (∆(i) is the corresponding root system (ADE type)). One can write down
the K-theory class as:

(3.5.1) [OT ] = n[OP] +
r

ÿ

i=1

n(i)
ÿ

j=1

mj(i)[OPi b ρj(i)]

where P P S is a generic point. Around the singular point Pi P S/G, we have Gi Ă SU(2) and ∆i has
rank n(i). Here ρ0(i), ρ1(i), ¨ ¨ ¨ , ρn(i)(i) are the irreducible representations of Gi. Let m = tmj(i)u and
let Hilbn,m(S) Ă Hilb(S) be the component with respect to the K-theory class (3.5.1). We let

Dm :=
r

ÿ

i=1

n(i)
ÿ

j=1

mj(i) ¨ Ej(i)

where E1(i), ¨ ¨ ¨ , En(i)(i) are the exceptional curves over Pi under the crepant resolution Y Ñ S/G.
As in [6, §5], we write m = tmj(i)u as the vector m(i) P M∆(i) in the root lattice. We have

D2
m = ´

r
ÿ

i=1

(m(i)|m(i))∆(i)

From [6, Proposition 5.1], we have

Lemma 3.5. There exists a birational morphism between the Hilbert scheme Hilbn,m(S) and the Hilbert
scheme Hilbn+ 1

2 D2
m(Y).

Recall the isomorphism Φ˚ : H˚CR(S) Ñ H˚(Y) in Proposition 3.1, if there is a Mukai vector
vorb P ΓG

0 , then vY := Φ˚(vorb) is a Mukai vector in ΓY
0 . We can write vorb P ΓG

0 as

vorb = (r, (β,m), n)

where m = tmj(i)u corresponding to the stacky points P1, ¨ ¨ ¨ , Pr. Under the crepant resolution
morphism

σ : Y Ñ S/G

we have mj(i)[OPi b ρj(i)] correspond to mj(i)[Ej(i)]. Let

n := xvY, vYy/2 + 1´
1
2

D2
m.

Since under the isomorphism Φ˚ : H˚CR(S)Ñ H˚(Y), xvorb, vorby = xvY, vYy.

Lemma 3.6. For any Mukai vector vorb = (r, (β,m), n) P ΓG
0 such that vY = Φ˚(vorb). There is a birational

morphism

Hilbn,m(S) 99K HilbxvY ,vYy/2+1(Y).

Proof. This is from Lemma 3.5. �
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3.6. Multiple cover formula. Recall the Joyce invariant Jω(vorb) for vorb P ΓG
0 in Definition 3.8. Since

the invariant is independent to the polarization ω, we just write the Joyce invariant as J(vorb).

Theorem 3.7. There is a multiple cover formula for J(vorb):

J(vorb) =
ÿ

k|vorb,kě1

1
k2 χ(Hilbn,m(S))

where the data n,m are determined by 1
k vorb = (r, (β,m), n).

We prove Theorem 3.7 in the following sections.

3.7. Bridgeland stability conditions on DS
0 and DY

0 . On the category Cohπ(X) (or Cohπ(Z)), we
have the classical slope stability as in §2.6. For E P Cohπ(X),

µω(E) =
ω ¨ c1(E)

rk(E)
.

We still have the maximal slope µ+
ω (E) and minimal slope µ´ω (E) in the Harder-Narasimhan filtration

of E. We also have the torsion pair (Fω, Tω) as in (2.6.1). Let

Bω := xFω [1], Tωy Ă DS
0

Then Bω is the heart of a bounded t-structure on DS
0 . Note that replacing ω by tω does not change

Bω for t ą 0. Let us define
Ztω : K(Bω)Ñ C

by

E ÞÑ
ż

S
e´itω Ch(E)

where Ch(E) = (Ch0(E), Ch1(E), Ch2(E)) P H˚(S) by the general Chern character. Then

Ztω(E) = ´Ch2(E) +
t2ω2

2
Ch0(E) + itω Ch1(E).

The pair σtω = (Ztω, Bω) is a Bridgeland stability condition, i.e.,

σtω = (Ztω, Bω) P StabΓG
0
(DS

0 )

where StabΓG
0
(DS

0 ) is the Bridgeland stability manifold.
Let H(Bω) be the Hall algebra of the abelian category Bω. Let Mtω(vorb) Ă M(Bω) be the

moduli substack of Ztω-semistable objects E P Bω with rcl(E) = vorb. Then we have an element

δσtω (vorb) := [Mtω(vorb) ãÑM(Bω)] P H(Bω)

and its logarithm

(3.7.1) εσtω (vorb) :=
ÿ

`ě1,v1+¨¨¨+v`=vorb,viPΓG
0

argZtω(vi)=argZtω(vorb)

(´1)`´1

`
δσtω (v1) ‹ ¨ ¨ ¨ ‹ δσtω (v`)

We let
C(Bω) := Im(rcl0 : Bω Ñ ΓG

0 )

Definition 3.8. For vorb P C(Bω), we define

Jσtω (vorb) = lim
q

1
2Ñ1

(q´ 1)Pq(εσtω (vorb)).

For ´vorb P C(Bω), we define Jσtω (vorb) = Jσtω (´vorb).
For vorb R C(Bω), Jσtω (vorb) = 0.
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3.8. The invariant Jω
(vorb). We work on Cohπ(X). Similarly from Definition 3.8, we can define Joyce

invariant
Jω

(vorb) P Q

counting ω-Gieseker semistable sheaves E P Cohπ(X) with vorb(E) = vorb P ΓG
0 . Also from [26,

Theorem 4.21], Jω
(vorb) does not depend on ω. We have

Lemma 3.9. For any vorb P ΓG
0 ,

Jω
(vorb) = Jσtω (vorb).

For any vY P ΓY
0 ,

Jω
(vY) = Jσtω (vY).

Proof. This is from Theorem 2.8 proved in §2.10, and [26, Theorem 4.24]. �

Recall that Jω
(vorb) is defined as

lim
q

1
2Ñ1

(q´ 1)Pq(εω,X(vorb))

where

εω,X(vorb) :=
ÿ

`ě1,v1+¨¨¨+v`=vorb,viPΓG
0

χω,vi
(m)=χω,vorb

(m)

(´1)`´1

`
δω,X(v1) ‹ ¨ ¨ ¨ ‹ δω,X(v`)

Also since the invariants Jω
(vorb) also are independent to the stability conditions. We just write

them as J(vorb). Then the same arguments as in [26, Lemma 4.25, Lemma 4.26] show that

Lemma 3.10. We have
J(vorb) = 2J(vorb)

Similar relations hold when we replace J(vorb) and J(vorb) by J(vY) and J(vY) respectively.

3.9. Automorphic property. We prove some automorphic property of J(vorb). Let us write down the
derived equivalence:

Φ : D(Coh(S)) „
ÝÑ D(Coh(Y))

explicitly from [5]. The equivalence Φ is given by:

Φ(´) = Rp2˚p˚1 (´b
L E)

for the kernel E P D(S ˆY) of Φ, where p1 : S ˆY Ñ S and p2 : S ˆY Ñ Y are the projections. Thus
we have the diagram (3.1.1) before, such that

Φ˚(´) = Ip2˚(Ip˚1 (´) ¨ ĂCh(E) ¨
b

rtdSˆY)

where
Ip1 : IS ˆY Ñ IS

and
Ip2 : IS ˆY Ñ Y

are projections on inertia stacks. Φ˚ induces an isomorphism on the weight two Hodge structures.
Note that in general rHCR(S), taken as the Chen-Ruan cohomology, will have Q- or C-coefficients.
Since we take

vorb : K(Coh(S))Ñ rHCR(S)
by

E ÞÑ ĂCh(E)
b

rtdS

We call rHCR(S) an integral structure since from Fourier-Mukai pairing,

χ(E, F) = ´xvorb(E), vorb(F)y.
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And Φ˚ should be an isomorphism from rHCR(S) to rH(Y, Z).
The derived equivalence Φ induces an isomorphism on the stability manifolds:

Φst : Stab(D(Coh(S))) „
ÝÑ Stab(D(Coh(Y))).

Proposition 3.11. Let Stab˝(D(Coh(S))) and Stab˝(D(Coh(Y))) be the connected components containing
the stability conditions σtω constructed before. Then Φst takes Stab˝(D(Coh(S))) to Stab˝(D(Coh(Y))). For
any vorb P ΓG

0 , we have
JS (vorb) = JY(Φ˚vorb) = JY(vY).

Proof. The proof is similar to [26, Proposition 4.29]. Consider X = S ˆP1 and Z = YˆP1. Then the
equivalence Φ : D(Coh(S)) „

ÝÑ D(Coh(Y)) induces an equivalence

rΦ : Db(Coh(X)) „
ÝÑ Db(Coh(Z))

such that the kernel is given by:

E b O∆
P1 P Db(Coh(S ˆYˆP1 ˆP1)).

Thus rΦ restricts to give an equivalence: between DS
0 and DY

0 . Therefore the diagram (3.1.1) gives a
diagram:

(3.9.1) DS
0

rΦ //

rcl+0
b

rtdS
��

DY
0

cl0
?

tdY
��

ΓG
0

Φ˚ // ΓY
0

Also rΦ induces the isomorphism

rΦst : Stab˝ΓG
0
(DS

0 )
„
ÝÑ Stab˝ΓY

0
(DY

0 ).

Take σS P Stab˝ΓG
0
(DS

0 ), such that rΦst(σS ) = σY. For any vorb P ΓG
0 , from diagram (3.9.1), we calculate

JY(Φ˚vorb) = JσY
Y (Φ˚vorb)

= J
rΦst(σS )
Y (Φ˚vorb)

= JσS
S (vorb)

= JS (vorb).

�

From Lemma 3.10,

Corollary 3.12. We have:
JS (vorb) = JY(vY).

3.10. Proof of the multiple cover formula Theorem 3.7. In this section we prove the multiple cover
formula for the invariants J(vorb) for vorb P ΓG

0 .
First for the Mukai vector vY P ΓY

0 , since Y is a smooth K3 surface, Toda’s multiple cover formula,
which was proved in [19], says

J(vY) =
ÿ

k|vY ,kě1

1
k2 χ(HilbxvY ,vYy/2+1(Y)).
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Since J(vY) = J(vorb) for Φ˚(vorb) = vY, we have

J(vorb) =
ÿ

k|vY ,kě1

1
k2 χ(HilbxvY ,vYy/2+1(Y)).

From §3.5 and Lemma 3.6, we have

Hilbn,m(S) 99K Hilbx
vY
k , vY

k y/2+1(Y)

is birational equivalent, where

n := x
vY
k

,
vY
k
y/2 + 1´

1
2

D2
m = x

vorb
k

,
vorb

k
y/2 + 1´

1
2

D2
m

and m is determined by the Mukai vector vorb
k = (r, (β,m), n) P ΓG

0 . Therefore we have

J(vorb) =
ÿ

k|vorb,kě1

1
k2 χ(Hilbn,m(S)).
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